Using Custom Services

Wakanda allows you to create and use custom services in your applications. Basically, a service
is a piece of JavaScript code which makes a functionality available to the Wakanda application.
For example, a "mail" service could provide functions to send or get emails.

Once launched, a service can communicate with the application through messages such as
"applicationWillStop", allowing the JavaScript code to execute appropriate actions. Services can be
started and stopped at any time, for example depending on specific events.

In Wakanda, a service is based on two parts:

e a CommonJS module,
 settings to define in the .waSettings file of the application.

A service can also embed some JavaScript files.

Wakanda provides you with a Services SSJS utility module containing several functions that can
make services management easier.

Note: For internal needs, Wakanda uses for example the following services:

e Datastore service
e RPC service
o WebApp service

Building a CommonJS Module for Service

Wakanda service JavaScript code must be provided as a CommonJS module. For more
information about CommonJS architecture, please refer to the CommonJS specification.

A Wakanda service CommonJS module must export a postMessage function:

exports._postMessage = function(message) {
3 // messages processing

The application will use this function to notify the service when some events occur. The message
object parameter contains at least one 'name’ property and other properties required by the
message.

The service can receive the following message names:

Message Code Comment

o - message.name = The project is being started. It's the first message
applicationWillStart ‘applicationWillStart’ sent to the service

message.name =

applicationWillStop ‘applicationWillStop'

The project is being closed

httpServerDidStart 'rﬁfti)ssae%(\a/.enraDriTﬁSt:a "t The Wakanda HTTP Server is being started
httpServerWillStop ma%séae%?/ér]r?/{l?llesz)p' The Wakanda HTTP Server is being closed
catalogWillReload @:tfiig(\e/\'/ﬂﬁgfo:d' ;’gﬁ/éﬂratastore model is being reloaded on the
catalogDidReload rgaetsgiggiré%rgleo;l lgr?/gratastore model has been reloaded on the

The service module file is declared through the 'modulePath' setting (see Defining the Settings for

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

http://doc.wakanda.org/Services/Services.100-967732.en.html
http://www.commonjs.org/specs/modules/1.0/
http://doc.wakanda.org/Using-Custom-Services/Defining-the-Settings-for-a-Service.200-951578.en.html

a Service). This setting is an id, as defined in the CommonJS specification, just like the id
parameter passed to the require() method. It is usually a reference to a file located in the
‘Modules' folder of the project. For example, if your 'modulePath’ setting is
"Modules/services/myService"”, you can access the module object using the following statement:

var myModule = require("services/myService”)
How an Application Handles Services

First, the Wakanda application registers a service for each service setting found (see Registering a
Service).

Then, once started, the application posts the 'applicationWillStart' message to each service:

message .-name="applicationWillStart”

Note: The ‘'applicationWillStart' message is posted before executing the application bootStrap.

Calling an Application Service from Another One

By default, a service will work with the 'application' object which references the global object.
Therefore, an application may need access to the services of another application. In order to
support this feature, the service must implement a function which will return a service instance of

the target application. Take a look at the the getlnstanceFor() function code in the SSJS utility
module to know how to implement such a function.

Defining the Settings for a Service

Declaration and configuration

To set a CommonJS module as a service, you need to declare it in the .waSettings file of your
project. There are several ways that you can set a Service file in Wakanda Studio:

o Select any .js file in the Modules folder at the root of your project and select Set as
Service (*) in the contextual menu (or in the global menu -):

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

http://doc.wakanda.org/Using-Custom-Services/Defining-the-Settings-for-a-Service.200-951578.en.html
http://www.commonjs.org/specs/modules/1.0/
http://doc.wakanda.org/Global-Application/Application/require.301-664756.en.html
http://doc.wakanda.org/Using-Custom-Services/Defining-the-Settings-for-a-Service.200-951578.en.html#951606
http://doc.wakanda.org/Using-Custom-Services/Defining-the-Settings-for-a-Service.200-951578.en.html#951606
http://doc.wakanda.org/Services/Services/getInstanceFor.301-951767.en.html

|
=l £ Modules 76 |.
U] myRPC.js 27 ST
| — . 28
IMEDL& Close Solution

Rename F2
Open in New Window
Open in New Tab
Mew 3
Add an Existing Project to Solution
Import »
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V

Delete

Folders on Top

Auto Hide Wakanda File Extensions
Open Enclosing Folder

Select Parent

Set as RPC
¥ Setas Service

(*) Unchecking this item will cause the corresponding entry in the .waSettings file to be
removed.

e Select New>JS Module in either the File menu, the New toolbar icon, or the Project
explorer contextual menu and check Service in the file creation dialog box:

-

Mew 15 Module File

wakanda

JS.everywhere()

Enter a filename:

myService,js

Destination folder: Modules

RPC Module

A new service file is then opened in the Code Editor with a sample template.

Whichever way you choose to define or create the file, the service is then available through the
Settings graphical interface of the Wakanda Studio, where you can enable/disable it:

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

Services ¥| Enable "webApp"
Auto-Start [

¥| Enable "rpc
Auto-Start ¥

Proxy pattern: “rpc-prosy/

Publish in Client global Mamespace

¥| Enable "dataStore"
Auto-Start [V

¥| Enable "upload"

Auto-Start [V

Q Enable "m','Ser*@

Behind the scene, a new entry is added to the .waSettings file. In this entry, the module is
declared and client access is allowed, for example:

<service name="myService'" modulePath="myService" enabled="true"/>

If you want to add additional attributes to the service, you need to edit the .waSettings file
(see below).

Handling Settings

A service is registered in the settings file of the project. The settings file is suffixed .waSettings
and is located at the first level of the project folder. For more information, please refer to the

Project Settings paragraph.
A service is declared in the .waSettings file using the following information:

<service name="myService'" modulePath="modulelD" enabled="true" [other attributes]/>

e modulePath (mandatory): ID of the CommonJS module. It should be the same value as the
id parameter passed to the require() function.

e name (optional but recommended): name used to add the service in the
application.settings.services memory Storage object. If the name is not passed,
Wakanda Server will try to extract it from the module ID.

e enabled (optional): to enable or disable the service; default value is "true"

You can also add any custom settings using attributes:

<service name="myService" modulePath="modulelD" enabled="true" autostart="true"
optimization="on"/>

All service settings are automatically available through the application.settings.services
memory Storage object:

var sName = settings.services.myService.name // contains ''myService"
var sPath = settings.services.myService.modulePath // contains "modulelD"
var sAuto = settings.services.myService.autostart // contains "‘true”
var sOpt = settings.services.myService.optimization // contains "on"

Registering a Service

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

To be recognized by the application, each service must be registered. If you declared the service
in the settings file (see above), the registration is automatic.

Otherwise, the service must be registered using the registerService() utility function (see module
description).

Once registered, the service has an entry in the application.storage.services memory Storage

object:
var sName = storage.services.myService.name // contains "myService"
var sPath = storage.services.myService.modulePath // contains "modulelD"

The service is also able to append its own data in the storage object, for example:

storage.services.myService.source="provided by Wakanda Team"

Detailed Example

In this example, we will implement a custom service named "myService", entirely written in
JavaScript.

Settings File

In the settings file of the project (myProject.waSettings), we write:

<?xml_version="1.0" encoding="UTF-8"?7>
<settings>

service name="myService" modulePath="'services/myService" enabled="true"
autostart=""true"

</seifings>
The service module, named "myService.js", is located in the "Modules/services" folder of the
project.

CommonJS Module

The module code is:

/> Constants for service state */
var KSTATE_STARTED = 1;
var kSTATE_STOPPED = 2;
var kSTATE_PAUSED = 3;
var kSERVICE_NAME = "myService”;

var servicesModule = require("services");

/; myService Service implementation class
*
function servimpl() {

/* Private members
*/

/; Initialize the instance
*
this._init = function O {
this. context = {};
/= Load the context of the service from the "storage®™ object
*
this. loadContext = function () {

var done = false;

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

iT (servicesModule.isServiceRegistered(kSERVICE_NAME)) {
var servicesData = storage.getltem("services®);
this. _context = servicesData[kSERVICE_NAME];
if (!this._context.hasOwnPropersy("state”)) {
/* Initialize the service *
this._context.state = KSTATE_STOPPED;
/* Save the context */
servicesData[kSERVICE_NAME] = this._context;
storage.setltem("services”, servicesData);

done = true;

}

return done;

}:

/= Save the context of the service in the "storage® object
*

this._saveContext = function () {

var done = false;

if (servicesModule.isServiceRegistered(KSERVICE_NAME)) {
var servicesData = storage.getltem("services");
servicesData[KkSERVICE_NAME] = this._context;
storage.setltem("services®™, servicesData);
done = true;

return done;

};

4; Public members

this.isStarted = function O {

if (this._loadContext()) {
return (this._context.state == KSTATE_STARTED);

return false;

/= Start a stopped service
*
this.start = function () {

if (this. loadContext()) {
if (this. _context.state == kSTATE_STOPPED) {
/* Install the myService request handler */
this._context.state = KSTATE_STARTED;
y this._saveContext();
}
}:

4; Stop a started or paused service
this.stop = function (O {

it (this. loadContext()) {)
if ((this._context.state == kSTATE_STARTED) || (this._context.state ==
kSTATE_PAUSED)) {
/* Uninstall the myService request handler */
this. context.state = KSTATE _STOPPED;
this. _saveContext();

}}
};
/; Pause a started service
*

this.pause = function () {

if (this._ loadContext()) {
if (this._context.state == KSTATE_STARTED) 1
/* Uninstall the myService request handler */
this._context.state = KSTATE_PAUSED;
this._saveContext();

+
}
}:
i; Resume a paused service

this.resume = function () {

if (this._loadContext()) {

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

it (this._context.state == KSTATE_PAUSED) {
/* Install the myService request handler */
this._context.state = KSTATE_STARTED;
this._saveContext();

}
};

/* Initialize the iInstance
*
this._init(Q);

return this;

}

/; Create service implementation
*
var impl = new servimpl();

4; Handler for service messages
exports.postMessage = function (message) {
if (Cimpl "= null) && (typeof impl != "undefined™)) {
it (message.name === "applicationWillStart™) { _
var serviceSettings = settings.getltem("services”);
it (serviceSettings[kSERVICE NAME].hasOwnProperty("autoStart™)) {

it (serviceSettings[kSERVICE_NAME].autoStart === "‘true')
impl._.start(Q);

3 b

else if (message.name === "applicationWillStop™) {
impl._.stop();

else if (message.name === "httpServerWillStop™) {

impl _pause();

else if (message.name === "httpServerDidStart™) {
impl.resume();

}
}:
exports.start = function) {

it ((impl '= null) && (typeof impl I!= “undefined)) {
impl_start(Q);

¥

exports.stop = function O {

it ((impl '= null) && (typeof impl I= “undefined)) {
impl.stop(Q);

¥

exports.isStarted = function () {

it (CGimpl "= null) && (typeof impl != "undefined™)) {
return impl.isStarted();

}
return false;

http://doc.wakanda.org/ManualPrint/1/951804/print.en.htmI[11/02/2013 17:38:53]

	Using Custom Services
	Building a CommonJS Module for Service
	How an Application Handles Services
	Calling an Application Service from Another One

	Defining the Settings for a Service
	Declaration and configuration
	Handling Settings
	Registering a Service

	Detailed Example
	Settings File
	CommonJS Module

