
Wakanda Studio Extensions

Creating an extension in two minutes

Want to create your first extension in just two minutes? Go to the My first Extension section.

What are extensions?

Wakanda Studio Extensions are software programs that can add new functionalities to the Wakanda Studio. For example, an
extension can write automatically a set of predefined comment lines at the beginning of scripts.

Extensions are written using standard Web technologies such as JavaScript, HTML, CSS, and JPEG. Everyone can write
Wakanda Studio extensions, for their own needs or for sharing with the Wakanda community. The Wakanda Development
team provides built-in pre-installed extensions such as "Beautifier" that you can use as standard Studio features.

Extensions can add contextual functionnalities to various toolbars and menus of the Wakanda Studio, including the main
toolbar and the solution explorer contextual menu.

Where to add extensions?

Commands for executing extensions can be toolbar buttons or contextual menu commands. These interface elements can be
added to the following parts of the Wakanda Studio:

Solution manager toolbar
Solution explorer contextual menu (Tree view)
Solution explorer contextual menu (List view)
Solution explorer contextual menu (Thumbnail view)
Code editor toolbar
Code editor contextual menu

Solution explorer global menu ()

You can combine these locations and create any feature you need:

a single extension can provide several buttons and/or menu commands in one or several areas
a single feature can be associated to a button and a menu command

How to use this manual?

You want to create an extension in two minutes using a template:
-> go to My first Extension
You want to install an extension in your Wakanda Studio:
-> go to Installing Extensions
You want to see quickly how to write an extension:
-> go to Getting started
You want to access the detailed reference documentation for creating Wakanda studio extensions:
-> go to Creating Extensions and API: Basic.

1 of 39

My first Extension

Here are the instructions to make your first Wakanda extension in less than 2 minutes by following these 7 steps:

Download the Extension Template from our server and unzip it in the Extensions folder:
On Windows: {Disk}:\Users\{User name}\AppData\Roaming\Wakanda Studio\Extensions\
On Mac OS: /Users/{User name}/Library/Application Support/Wakanda Studio/Extensions/

You may have to create the Extensions folder manually.
For more information, refer to the Installing Extensions section.

1.

Open manifest.json in a text editor and define your extension name by replacing YOUR_EXTENSION_NAME.

2.

Replace YOUR_EXTENSION_DESCRIPTION with a brief description of your extension.

3.

Define your extension action name by replacing YOUR_ACTION in manifest.json.

4.

Replace YOUR_ACTION_TITLE in manifest.json with an easy-to-understand title.

5.

Open index.js in a code editor and replace YOUR_ACTION to rename the action.

6.

Write the function body in index.js to define your action.7.

Voilà! Restart your Wakanda Studio and you will see your first extension appear in the main toolbar. You can place your
extension icon/menu in other places -- in manifest.json, just replace "studioToolbar" with another valid value (please refer to
the senders paragraph).

A good example illustrates the whole picture better than detailed documentation. You can check the Wakanda Studio
Extension Demo to learn how to make certain commands more complex.

However, knowledge of Wakanda Studio Extension System is required if you want to accomplish sophisticated extensions.
Check the Wakanda Studio Extension online documentation for more detailed information.

You can use the Wakanda Studio Extension development forum for any technical questions/answers and for the
announcement your new extension.

2 of 39

Installing Extensions

A Wakanda Studio Extension is a set of files grouped in a single folder. To install the extension in your Wakanda Studio, you
just need to copy the extension folder (whose name is free) in the Extensions folder at the appropriate location. The
Extensions folder can exist in two different places:

In the Wakanda Studio application folder:
On Windows: next to the Wakanda Studio.exe file
On Mac OS: at the first level of the Contents folder inside the application package.

In this case, extensions are available only in this Wakanda Studio application.
Installing files or folders at this location requires administrator access rights, and can make subsequent updates an
issue. It is usually not recommanded to install custom extensions in the application.

In the user data of Wakanda Studio:
On Windows: {Disk}:\Users\{User name}\AppData\Roaming\Wakanda Studio\
On Mac OS: /Users/{User name}/Library/Application Support/Wakanda Studio/

In this case, extensions are available for any Wakanda Studio application running on the machine in the user session,
including subsequent updates. This location does not need specific access rights.
Note: Under Mac OS 10.7 ("Lion"), you need to expand the Go menu in the Finder while holding down the Option key
to reveal the Library command that you must use to open the corresponding folder.

The following diagram illustrates the installation options (Windows):

Priority is given to the user data location: if the same extension exists at both locations (same folder name), Wakanda Studio
will only load the files from the user data.

3 of 39

Getting started

As a first step to discover how to create an extension to the Wakanda Studio, we will write a very classic and basic example:
adding a button to the code editor toolbar that displays "Hello, World!".

Using any text editor (for example the Wakanda Studio code editor), create a new file named manifest.json and write
the following code:

{
 "extension":
 {
 "name": "Hello World",
 "version": "1.0.0",
 "description": "Hello World Demo for Wakanda Extensions",
 "icon": "HelloWorld.png",
 "senders": [
 {
 "location": "codeEditorToolbar",
 "icon": "HelloWorld.png",
 "actionName": "say_hello"
 }
],
 "actions": [
 {
 "name": "say_hello",
 "title": "hello"
 }
],
 "lifetime": "action_lifetime"
 }
}

This code describes our extension. For more information on how to write the manifest.json file, please refer to the
Configuring the manifest.json file section.

1.

Create another file named index.js and write the following code:

exports.handleMessage = function handleMessage(message) {
 if(message.action == "say_hello")
 studio.alert("Hello World!");
 };

This file will contain the action(s) to execute and the unique entry point of the extension. For this tutorial, we write
the basic contents of the file, but it is generally much faster to use a "template" index.js file and add your own actions.
For more information on how to write the index.js file, please refer to the Configuring the index.js file section.

2.

Create a new folder, name it for example "Hello World", and save your manifest.json and index.js files in that folder.
Add also a picture button file named "HelloWorld.png" (you can download a little icon here).

3.

Copy the "Hello World" folder in the Wakanda Studio Extensions folder, as described in the Installing Extensions
section (choose the user data folder for more convenience).

4.

Relaunch Wakanda Studio if it was already opened and load any file in the Code editor.
You should see the new button: click on the button, that's it!

5.

4 of 39

5 of 39

Creating Extensions

A Walanda Studio extension is defined through two mandatory files:

manifest.json: declares the actions and their location in the Wakanda studio interface.
Objects to write in this file are detailed in the Configuring the manifest.json file section.
index.js: contains the code to execute in response to actions. The API: Basic is provided for extensions to communicate
with Wakanda Studio internal components (for example, the code editor).
This file is described in the Configuring the index.js file section.

An extension can use a unlimited number of additional files (HTML, pictures, scripts...). All the extension files must be
gathered in a single folder.

Configuring the manifest.json file

The manifest.json file is one of the mandatory pieces of a Wakanda Studio extension: it describes the extension and declares
the actions and their locations in the two toolbars and four contextual menus available (see Where to add extensions?).

In this file, you can define the extension name and properties, the name of each action and the locations where Wakanda
Studio should display these action commands. A single extension can add several menu items and buttons in different
locations.

The manifest.json file is a JSON format file; it only handles strings.

extension

"extension" is the main object of the manifest.json file. It contains 7 objects, described below:

name
version
description
icon
actions
senders
lifetime
compatibleBuildVersion (optional)

name

"name" contains the extension name. Example:

"name": "Hello World"

version

"version" contains the extension version. Example:

"version": "1.2.1"

description

"description" provides a short description of the extension. Example:

"description": "My Great Wakanda Studio Extension"

icon

"icon" contains the path of the default icon file (relative to the extension's folder).
This icon will be used if a single button is defined by the extension. In case of multiple buttons, individual icons can be
defined separately through the "senders" object.

Example:

"icon": "myIcon.png"

actions

"actions" contains the action name(s), title(s) and optional elements, as described below:

Object Mandatory Type Description

6 of 39

name yes string Designates the action. Must be unique in "extension"

title yes string Default title for the action (i.e. the item label if the extension is a menu item)

targets no array of
target
objects

Defines the type of file where the action could be proposed (for example, .js or .html
files). If omitted, the action can be available for each type of file. Can contain the
following objects:

uti Uniform Type Identifier
mimeType to be implemented
fileExtension to be implemented

trigger no array of
event
objects

An event object contains the "event" property. When an action subscribes to a studio
event, then this action is triggered by this event and sent to the handleMessage
Function of the index.js file. Possible values are:

fromSender actions are triggered by the GUI, i.e.
buttons and menu items

onSave the current edited file is saved. The saved
file will be the first element of
message.source.data.
message.source.name can be
"fromCodeEditor", "fromWebDesigner",
"fromSettingsView", "fromDirectoryView",
"fromModelView", "fromShortcutView" or
"fromExtensionSystem".

onFileDirty the current file has been altered. The
modified file will be the first element of
message.source.data.
message.source.name can be
"fromCodeEditor", "fromWebDesigner",
"fromSettingsView", "fromDirectoryView",
"fromModelView", "fromShortcutView" or
"fromExtensionSystem".

onFilesAddedInSolution a file was added to the solution explorer
area. message.source.name will be
"fromSolutionExplorer" and
message.source.data will contain each
added File.

onFilesRemovedFromSolution a file was removed from the solution
explorer area. message.source.name will
be "fromSolutionExplorer" and
message.source.data will contain each
removed File.

onFolderCollapsed message.source.name will be
"fromSolutionExplorer" and
message.source.data will contain each
operation Folder.

onFolderExpanded message.source.name will be
"fromSolutionExplorer" and
message.source.data will contain each
operation Folder.

onSolutionCreated a new solution is created.
message.source.name will be
"fromSolutionExplorer" and
message.source.data will contain the
created Folder.

onProjectCreated a new project is created.
message.source.name will be
"fromSolutionExplorer" and
message.source.data will contain the
created project File.

onSolutionOpened an existing solution is opened.
message.source.name will be
"fromSolutionExplorer".

7 of 39

onSolutionClosed the solution is closed.
message.source.name will be
"fromSolutionExplorer".

onStudioStart Wakanda Studio in started.
message.source.name will be "fromStudio".

onFilesMovedInSolution(*) file(s) are moved within the solution
explorer. message.source.name will be
"fromSolutionExplorer".
message.source.data will contain the
destination Folder as the first element and
the source path string of each moved item
(file or folder) as the following elements.

shortcut no array of
shortcut
objects

Each action may have its shortcut defined in this field. If the shortcuts defined are in
conflict with the Studio's shortcuts, then priority will be given to the Studio. Possible
values are:

shortcutKey Possible values: "yes" and "no". Ctrl key for Win, Command
key for Mac

alternateKey Possible values: "yes" and "no".
shiftKey Possible values: "yes" and "no".
key Possible values: "A"-"Z", "home", etc.

(*) Moving files by drag and drop in a solution will trigger the following three notifications, in the order shown here:
1. onFilesMovedInSolution
2. onFilesAddedInSolution
3. onFilesRemovedFromSolution
However, if an extension action only subscribes to onFilesMovedInSolution, then only this action will be triggered by
onFilesMovedInSolution.
The result (source files moved) is not verified - move operations may fail - so it is the extension author's responsibility to
check the presence/absence of files in both source and destination folders.

Example :

 "actions": [
 {"name": "js_if",
 "title": "if-else",
 "targets": [
 { "uti": "com.netscape.javascript-source" }
],
 "shortcut": {
 "shortcutKey" : "yes",
 "alternateKey" : "yes",
 "shiftKey" : "no",
 "key" : "i"
 }
 },
],

senders

"senders" defines the location(s) of action commands, i.e. the interface objects that will generate the actions.
This property is an array of sender objects. Each sender object contains the following properties:

Object Mandatory Type Description

location yes string Indicates where to make the extension
available. You can pass one or more values.
Available strings are:

 studioToolbar

 solutionExplorerTreeViewContextMenu

 solutionExplorerListViewContextMenu

solutionExplorerThumbnailViewContextMenu

 solutionExplorerGlobalMenu

 codeEditorToolbar

 codeEditorContextMenu (to be
implemented)

8 of 39

actionName yes if no "menu" object array is passed string Name of an action defined in the name
property of the "actions" object. Use this first
level actionName when it is available through
a single button. Use "menu" property instead if
you want to define a menu. "menu" and
"actionName" cannot both be present.

title no string Toobar icon or menu item title. If omitted, the
title property of the "actions" object will be
used as default value.

menu yes when the "location" value is
solutionExplorerTreeViewContextMenu,
solutionExplorerListViewContextMenu,
solutionExplorerThumbnailViewContextMenu,
solutionExplorerGlobalMenu or
codeEditorContextMenu or if no "actionName"
object is passed

array
of
menu
item
objects

Array of menu item objects, which can be
repeated recursively down until the 2nd level.
Use this property if you want to define a
menu. Use the first level "actionName" instead
if you want to define a single button. "menu"
and "actionName" cannot be both present.
Each "menu item" object contains the
following properties:

actionName Mandatory if
no "menu"
sub-object
array is
passed.
"menu" and
"actionName"
cannot both
be present.

Name of
an
action
defined
in the
name
property
of the
"actions"
object

menu Mandatory if
no
"actionName"
sub-object
array is
passed.
"menu" and
"actionName"
cannot both
be present.

Title of
a menu

title Mandatory if
a "menu"
sub-object
array is
passed

Menu
item
title. If
omitted,
the title
property
of the
"action"
object is
used

A menu array can contain an object separator,
which has the following syntax: "separator":{}

icon yes for buttons (i.e. first-level actionName
and location in studioToolbar or
codeEditorToolbar)

string Path of the picture file used as icon for the
button (relative to the extension's folder).

tips no string Additional information to display when the
cursor moves over the button. Used only for
buttons (i.e. first-level actionName and
location in studioToolbar or
codeEditorToolbar).

alternateTitle no string Title to display if the action's alternative state
is turned on. Used only for buttons (i.e.
first-level actionName and location in
studioToolbar or codeEditorToolbar).

9 of 39

alternateIcon no string Name of the icon file to display if the action's
alternative state is turned on. Used only for
buttons (i.e. first-level actionName and
location in studioToolbar or
codeEditorToolbar).

alternateTips no string Tip to display if the action's alternative state
is turned on. Used only for buttons (i.e.
first-level actionName and location in
studioToolbar or codeEditorToolbar).

Example of senders in both the code editor toolbar and contextual menu. They are associated with the same actions:

"senders": [
 {
 "location": "codeEditorToolbar",
 "tips": "Check Javascript Error"
 "menu":
 [
 {
 "actionName": "checkError"
 },
 {
 "actionName": "cleanErrors"
 }
]
 },
 {
 "location": "codeEditorContextMenu"
 "menu":
 [
 {
 "actionName": "checkError"
 },
 {
 "actionName": "cleanErrors"
 }
]
 }
],

lifetime

'lifetime" allows you to define the lifetime of the JavaScript context. Two values are available:

application_lifetime Keep JavaScript context alive among the actions

action_lifetime A new JavaScript context is created for each action and released after execution

Using "application_lifetime" allows the writing and reading of global variables in the unique context that is shared by all the
action calls in an extension. Each extension will have its own context.

Example:

"lifetime": "application_lifetime"

compatibleBuildVersion

"compatibleBuildVersion" indicates the lowest Wakanda Studio build version compatible with the extension. Note that it's a
build version, not a major version. The build version can be found in the "About Wakanda Studio" dialog box.

If the Wakanda Studio build version is smaller than the indicated version, the extension will not be loaded. The extension will
always be loaded if this property is omitted. It must be a digital value (not a string type).

Example:

"compatibleBuildVersion": 105605

Configuring the index.js file

The index.js file is the entry point of an extension for Wakanda Studio. All features (actions) provided by the extension are
defined in this JavaScript file. You can use:

standard JavaScript code, including require() statements,
a specific API, detailed in this manual.
All the Wakanda Studio components are available through this API in index.js.

10 of 39

handleMessage Function

The main entry function in index.js is named handleMessage. All the actions you declared in manifest.json will be passed to
this callback function and should be processed here.

The handleMessage should be set as the handleMessage property of an exports object.

The handleMessage function receives a message object as parameter. The message object has three properties, "action",
"event" and "source":

message.action contains the name of the action declared in manifest.json (for example, "js-if").
message.event indicates the source of triggered message object. It can contain:

"fromSender" if the message is triggered by the Wakanda Studio interface (ie. user clicks on a button or menu
item).
"onSave", "onFileDirty", "onFilesAddedInSolution", "onFilesRemovedFromSolution", "onFolderCollapsed",
"onFolderExpanded", "onSolutionCreated", "onProjectCreated" or "onSolutionOpened" if the action is defined
through a trigger and the user triggered the action.
"fromExtension" if the message is triggered by another extension (see sendCommand()).

message.source contains an object with two properties, "name" and "data".
"name" value is the event source name (string). Possible values are:

fromSender: the message is triggered by the Wakanda GUI (ie. user clicks on a button or menu item).
fromExtension: the message is triggered by another extension (see sendCommand()).
fromCodeEditor: the message is triggered by the Code editor.
fromWebDesigner: the message is triggered by the Web Designer.
fromSolutionExplorer: the message is triggered by Solution Explorer.
fromSolutionList: the message is triggered by Solution List.
fromSolutionThumbnails: the message is triggered by Solution Thumbnails.

"data" is an array which can contain one or more element(s) of string, File or Folder type. It depends on the
event.
For example, when the event is onFilesAddedInSolution, "data" is an array of File objects representing all files
added to the Solution Explorer.

Within this entry function, you will usually call any appropriate function depending on the message.action value.

Example

Here is a typical handleMessage function:

exports.handleMessage = function handleMessage(message) { // main entry point
 var actionName;
 actionName = message.action; // get the action name
 actions[actionName](message); // execute the actionName function
 // stored in the actions object
 // and pass the 'message' parameter as is
};

Using the Extension API

In the index.js file, you can use a dedicated set of API. This API gives access to the Wakanda Studio components and allows
you to benefit from all the features and capacities of the Studio.

Serveral API themes are available, for example API: Basic, API: Code Editor or API: Studio.

11 of 39

API: Basic

The "basic" theme methods allow you to display standard JavaScript dialogs.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

alert()

void alert(String message)

Parameter Type Description

message String Alert message

Description

The alert() method displays a warning text in a standard alert dialog box.

Example

The following code, executed from the index.js file of an extension:

studio.alert("Hello World!");

Displays:

confirm()

Boolean confirm(String message)

Parameter Type Description

message String Confirmation message

Returns Boolean true if the answer is Yes, false otherwise

Description

The confirm() method displays a confirmation dialog box and returns true if the user clicked on the yes button, and false if
the user clicked no. Yes and No labels are based on the current system language.

Example

The following code, executed from the index.js file of an extension:

var isok = studio.confirm("Are you sure?");

displays:

12 of 39

File()

File File(String path [, String fileName])

Parameter Type Description

path String Posix path of the file to reference
fileName String Name of the file to reference

Returns File New File object

Description

The File() constructor method allows you to create and handle a SSJS File type object from your extension code.

For more information about File objects, please refer to the File description.

Example

We want to create a new File object referencing the current opened document:

var fileRef = studio.File(studio.currentEditor.getPath());

Folder()

Folder Folder(String path)

Parameter Type Description

path String Posix path of the folder to reference

Returns Folder New Folder object

Description

The Folder() constructor method allows you to create and handle a SSJS Folder type object from your extension code.

For more information about Folder objects, please refer to the Folder description.

Example

We want to create a new Folder object referencing the preferences folder:

var folderRef = studio.Folder(studio.extension.getPrefFolderPath());

prompt()

String prompt(String message [, String defaultAnswer])

Parameter Type Description

message String Prompt message
defaultAnswer String Pre-entered string for the reply

Returns String String entered by the user

Description

The prompt() method prompts the user to enter a value in response to a message and returns the entered value.

You can pass in defaultAnswer a string showing an example of the value to enter or proposing a standard answer.

Example

13 of 39

The following code, executed from the index.js file of an extension:

var vaDate = new Date();
var userDate = studio.prompt("Please enter the creation date:",vaDate);

displays:

14 of 39

API: Code Editor

Methods in this theme allows reading and modifying the text displayed in the Wakanda Studio Code Editor.

Methods support JavaScript, HTML, XML, and any source code displayed in the editor.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

currentEditor.clearAnnotations()

void currentEditor.clearAnnotations()

Description

The currentEditor.clearAnnotations() method removes all warning symbols from the annotation bar of the open document.

This method will clear symbols added by any Wakanda extension using . However, it will not remove system warnings
indicating, for example, syntax errors.

currentEditor.getContent()

String currentEditor.getContent()

Returns String Contents of the edited document

Description

The currentEditor.getContent() method returns the whole content of the document currently displayed in the Code editor.

Example

You want to store temporarily a specific version of your code and be able to view it at any moment. You add two buttons to
the code editor associated with the "store_copy" and "show_copy" actions. In the index.js file, you can write:

actions.store_copy= function store_copy() {

 var content = studio.currentEditor.getContent(); // gets the current content
 studio.extension.currentDialog.setItem("codeCopy" , content); // put it in the storage
};

actions.show_copy= function show_copy() {

 var copied = studio.extension.currentDialog.getItem("codeCopy"); //read the storage
 studio.alert(copied); // show the contents of the codeCopy attribute
 };

currentEditor.getEditingFile()

File | Null currentEditor.getEditingFile()

Returns File, Null Edited document

Description

The currentEditor.getEditingFile() method returns a File object referencing the document currently opened in the Code
editor.

If there is no current document in the Code editor (for example if the window in the foreground is not a Code editor window),
the method returns null.

Example

var docPath = studio.currentEditor.getEditingFile().path;
 // docPath returns, for example
 // 'C:/Wakanda Solutions/My Solution/MyProject/MyScript.js

15 of 39

currentEditor.getSelectedText()

String | Null currentEditor.getSelectedText()

Returns Null, String Currently selected text

Description

The currentEditor.getSelectedText() method returns the text selected in the document currently displayed in the Code
editor. If nothing is selected in the document, currentEditor.getSelectedText() returns Null.

currentEditor.getSelectionInfo()

Object currentEditor.getSelectionInfo()

Returns Object Definition of the selection in the document

Description

The currentEditor.getSelectionInfo() method returns information about the selection in the document currently displayed in
the Code editor.

Information depends on the number of line(s) selected as well as the cursor position.

You must also consider the following specificities:

the Code editor line numbering starts at 1, although the currentEditor.getSelectionInfo() method line numbering
starts at 0;
collapsed or expanded code structures need to be taken into account. This is the reason why the returned object
contain different properties for selected lines (includes all lines, whatever their expand/collapse status) and "visible"
selected lines (counts a single line for a collapsed block).

The method returns an object containing the following properties:

Property Type Description

firstLineIndex Number Index of starting selection line

firstVisibleLine Number Index of "visible" starting selection line

firstLineOffset Number Starting selection position in the first selection line

lastLineIndex Number Index of ending selection line

lastVisibleLine Number Index of "visible" ending selection line

lastLineOffset Number Position of the last selected character in the last selection line

isLeftToRightSection Boolean true if the selection direction is from left to right, false otherwise

offsetFromStartOfText Boolean Position of the first selected character from the beginning of text (0)

selectionLength Number Length of selection

Example

Considering the following selection in the code editor:

16 of 39

var selObj = studio.currentEditor.getSelectionInfo();
var s1 = selObj.firstLineIndex; // s1 contains 5
var s2 = selObj.firstVisibleLine; // s2 contains 5
var s3 = selObj.firstLineOffset; // s3 contains 10
var s4 = selObj.lastLineIndex; // s4 contains 18
var s5 = selObj.lastVisibleLine; // s5 contains 15
var s6 = selObj.lastLineOffset; // s6 contains 13
var s7 = selObj.offsetFromStartOfText; // s7 contains 61
var s8 = selObj.selectionLength; // s8 contains 251
var isLR = selObj.isLeftToRightSection // isLR contains true

currentEditor.insertText()

void currentEditor.insertText(String textToInsert)

Parameter Type Description

textToInsert String Text to insert in the open document

Description

The currentEditor.insertText() method inserts textToInsert into the document currently displayed in the Code editor, at the
current cursor position.

If text was selected in the document, it is replaced by textToInsert.

Example

You want to be able to insert the current date in your code. You add a button to the code editor associated with the
"add_date" action. In the index.js file, you can write:

actions.add_date= function add_date() {

 var vadate = new Date();
 studio.currentEditor.insertText(vadate);
};

currentEditor.saveCurrentEditedFile()

Boolean currentEditor.saveCurrentEditedFile()

Returns Boolean True if the file has been saved, false otherwise

Description

The currentEditor.saveCurrentEditedFile() method saves the current edited file on disk if it has been modified since the
last save.

You can use this method to save a file automatically when it has been edited.

When you call this method, if the file has been modified since the last save, it is saved and the method returns true. If the

17 of 39

file has not been modified, it is not saved and the method returns false.

currentEditor.selectByLineIndex()

void currentEditor.selectByLineIndex(Number start, Number end, Number firstLineIndex, Number lastLineIndex, Boolean fromLeftToRight)

Parameter Type Description

start Number Start line offset
end Number End line offset
firstLineIndex Number Starting line index
lastLineIndex Number Ending line index
fromLeftToRight Boolean true for left-to-right selection, otherwise false

Description

The currentEditor.selectByLineIndex() method allows you to change the selection of text in the document currently
displayed in the Code editor using line index parameters, that is, without taking the collapsed/expanded status of lines into
account. If you want to set the selection of text with respect to the collapsed/expanded status of lines, you should consider
using the currentEditor.selectByVisibleLine() method.

Pass in start, end, firstLineIndex, lastLineIndex and fromLeftToRight parameters the new selection definition. For more
information about these parameters, please refer to the currentEditor.getSelectionInfo() method description.

currentEditor.selectByVisibleLine()

void currentEditor.selectByVisibleLine(Number start, Number end, Number firstVisibleLineIndex, Number lastVisibleLineIndex, Boolean fromLeftToRight)

Parameter Type Description

start Number Start line offset
end Number End line offset
firstVisibleLineIndex Number Starting visible line index
lastVisibleLineIndex Number Ending visible line index
fromLeftToRight Boolean true for left-to-right selection, otherwise false

Description

The currentEditor.selectByVisibleLine() method allows you to change the selection of text in the document currently
displayed in the Code editor using visible line index parameters, that is, by taking the collapsed/expanded status of lines into
acount. If you want to set the selection of text without worrying about the collapsed/expanded status of lines, you should
consider using the currentEditor.selectByLineIndex() or currentEditor.selectFromStartOfText methods.

Pass in start, end, firstVisibleLineIndex, lastVisibleLineIndex and fromLeftToRight parameters the new selection definition.
For more information about these parameters, please refer to the currentEditor.getSelectionInfo() method description.

currentEditor.selectFromStartOfText

void currentEditor.selectFromStartOfText(Number offset, Number length, Boolean fromLeftToRight)

Parameter Type Description

offset Number Starting selection offset
length Number Selection length
fromLeftToRight Boolean true to select from left to right, false otherwise

Description

The currentEditor.selectFromStartOfText method allows you to change the selection of text in the document currently
displayed in the Code editor by selecting the offset character to offset+length character. You can pass a negative value in
length, so that the text before the offset character will be selected. The offset character will be evaluated from the
beginning of the text and includes collapsed blocks. If the new selection overlaps a collapsed block, the block is automatically
expanded.

Pass true in the fromLeftToRight parameter to select text from left to right, and false to select from right to left.

Example

Considering the following content:

If you execute the following code:

18 of 39

studio.currentEditor.selectFromStartOfText(45,200,true)

The new selection will be:

But, if you execute the following code:

studio.currentEditor.selectFromStartOfText(45,205,true)

The new selection will be:

In this case, there is no need to expand the block, it is entirely selected.

currentEditor.setAnnotation()

void currentEditor.setAnnotation(Number lineIndex, String errorMsg)

Parameter Type Description

lineIndex Number Line index where to add a warning symbol
errorMsg String Tip to display when the mouse hovers on the warning symbol

Description

The currentEditor.setAnnotation() method allows you to add a warning symbol in the vertical annotation bar at the
lineIndex line in the open document. Keep in mind that Wakanda's Code editor line numbering starts at 1, but JavaScript
indexes document lines starting at 0.

Pass in errorMsg the message to display as tip when the mouse hovers on the set symbol.

Example

The following code:

studio.currentEditor.setAnnotation(81,"Use of a Wakanda reserved keyword");

... will add a warning symbol associated with a message in the open document:

currentEditor.setCaretPosition()

void currentEditor.setCaretPosition(Number offset)

Parameter Type Description

offset Number New position for the caret

Description

The currentEditor.setCaretPosition() method moves the caret (|) to the defined offset position in the document currently

19 of 39

opened in the Code editor.

The character position you pass in offset will be evaluated from the beginning of the text, including collapsed blocks. If the
new caret position is within a collapsed block, it is automatically expanded.

20 of 39

API: Extension

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.getFolder()

Folder extension.getFolder()

Returns Folder Extension folder

Description

The extension.getFolder() method returns a Folder object referencing the folder of the extension.

Example

You can call this code in the index.js file to get the extension folder path:

var fold = studio.extension.getFolder().path;

If your extension is installed in the user data as described in the Installing Extensions section, the fold string will contain:

C:/Users/Arnaud/AppData/Roaming/Wakanda Studio/Extensions/Hello World Extension/

21 of 39

API: GUI

Each extension action associated to a button has two graphical properties:
alternative property (Boolean): the extension can change button icon, button title, or button tips by changing the
associated action's alternative state.
enabled property (Boolean): the extension can make button enabled or disabled by setting enabled state to true
or false respectively.

Each extension action associated with a menu item has two graphical properties as well:
checked property (Boolean): the extension can check/uncheck a menu item by changing the associated action's
checked state to true or false.
enabled property (Boolean): the extension can show or hide the item by setting the enabled state to true or false
respectively.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

checkMenuItem()

void checkMenuItem(String actionName, Boolean isChecked)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isChecked Boolean True to check the menu item, false otherwise

Description

The checkMenuItem() method allows you to set the checked state of the menu item associated to the actionName.

Pass true in the isChecked parameter to check the menu item button and false to uncheck it.

hideProgressBarOnStatusBar()

void hideProgressBarOnStatusBar()

Description

The hideProgressBarOnStatusBar() method allows you to hide the animated progress bar in the Wakanda Studio status bar.

You can add an animated progress bar using the showProgressBarOnStatusBar() method. By default, the progress bar is not
displayed.

If the progress bar is not already displayed, this method does nothing.

Progress bar displayed

Progress bar hidden

isActionAlternated()

Boolean isActionAlternated(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the alternated button action state is on, false otherwise

Description

The isActionAlternated() method returns true if the alternated state for the actionName of a button is on.

The method returns false if the alternated state is off.

22 of 39

isActionEnabled()

Boolean isActionEnabled(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the enabled button action state is on, false otherwise

Description

The isActionEnabled() method returns true if the enabled state for the actionName of a button is on.

The method returns false if the enabled state is off.

isMenuItemChecked()

Boolean isMenuItemChecked(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the actionName menu item is checked, false otherwise

Description

The isMenuItemChecked() method returns true if the menu item associated to the actionName is checked.

The method returns false if the menu item is not checked.

setActionAlternated()

void setActionAlternated(String actionName, Boolean isAlternated)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isAlternated Boolean True to set the alternate state of the button, false otherwise

Description

The setActionAlternated() method allows you to set the alternate state of the button associated to the actionName.

Pass true in the isAlternated parameter to set the alternated state and false to remove it.

setActionEnabled()

void setActionEnabled(String actionName, Boolean isEnabled)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isEnabled Boolean True to enable the button action, false otherwise

Description

The setActionEnabled() method allows you to set the enabled state of the button associated to the actionName.

Pass true in the isEnabled parameter to enable the button and false to disable it.

showMessageOnStatusBar()

void showMessageOnStatusBar(String message)

Parameter Type Description

message String Text to display

Description

The showMessageOnStatusBar() method displays a message in the Wakanda Studio status bar, next to the progress bar.

This feature allows you to display information to the user, for example while time-consuming operations are being run.

Example

If you execute the following statement:

23 of 39

studio.showMessageOnStatusBar("Waiting for server response...");

The Wakanda Studio status bar will display the message:

showProgressBarOnStatusBar()

void showProgressBarOnStatusBar()

Description

The showProgressBarOnStatusBar() method allows you to show an animated progress bar in the Wakanda Studio status bar.

An animated progress bar is used to symbolize a pending operation. It is usually associated with a message (see
showMessageOnStatusBar() method).

By default, the progress bar is not displayed. When it is displayed, you can hide it using the hideProgressBarOnStatusBar()
method.

Example

If you execute the following code:

studio.showMessageOnStatusBar("Waiting for server response..."); // displays a message
studio.showProgressBarOnStatusBar("Waiting for server response..."); // displays a bar

The Wakanda Studio status bar will contain:

24 of 39

API: Preferences

This set of APIs allows the extension author to read or write extension settings, called preferences. A preference is a
combination of a key and a value. You can use two different sets of extension preferences: general preferences and solution
preferences.

User preferences

User extension preferences are used by the Wakanda Studio application. They are shared by all solutions. General extension
preferences are saved in the following file (optional):

On Windows: {Disk}:\Users\{User name}\AppData\Roaming\Wakanda Studio\ExtensionPreferences\EXT_FOLDER_NAME
\Preferences.json
On Mac OS: /Users/{User name}/Library/Application Support/Wakanda Studio/ExtensionPreferences
/EXT_FOLDER_NAME\Preferences.json

Solution extension settings

Solutions extension settings are set separately for each solution. They are designed to store solution-relative parameters,
such as specific paths. Solution extension settings are saved in the following file (optional):

On Windows: {Disk}:\Users\{User name}\Documents\Wakanda\{solution name}\{solution name}
Solution\ExtensionSettings\EXT_FOLDER_NAME\Settings.json
On Mac OS: /Users/{User name}/Documents/Wakanda/{solution name}/{solution name} Solution/ExtensionSettings
/EXT_FOLDER_NAME/Settings.json

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.deletePrefFile()

Boolean extension.deletePrefFile()

Returns Boolean True if the preference file was successfully deleted, false otherwise

Description

The extension.deletePrefFile() method removes the preference file from the disk. If the file was successfully deleted, the
method returns True, otherwise (for example, if the file is locked), it returns False.

extension.deleteSolutionSettingsFile()

Boolean extension.deleteSolutionSettingsFile()

Returns Boolean True if the solution settings file was successfully deleted, false otherwise

Description

The extension.deleteSolutionSettingsFile() method removes the solution settings file from the disk. If the file was
successfully deleted, the method returns True. Otherwise (for example, if the file is locked), it returns False.

Implementation Note (v4): This method was previously named deleteSolutionPrefFile().

extension.getPref()

String extension.getPref(String keyName)

Parameter Type Description

keyName String Name of the preference key to read

Returns String Current value of the preference key

Description

25 of 39

The extension.getPref() method returns the current value of the keyName preference key in the extension preference file.

If the keyName key does not exist in the file, an empty string is returned.

extension.getPrefFolder()

Folder extension.getPrefFolder()

Returns Folder Extension preference folder path

Description

The extension.getPrefFolder() method returns a Folder reference to the extension preference folder, where the extension
can add its files.

If the extension preference folder does not exist yet when the method is called, it is created.

Example

var prefFolder = studio.extension.getPrefFolder();
studio.alert(prefFolder.path);
// displays for example under Windows:
// 'C:\Users\{Name}\AppData\Roaming\Wakanda Studio\ExtensionPreference\Hello World Extension\'

extension.getSolutionSetting()

String extension.getSolutionSetting(String keyName)

Parameter Type Description

keyName String Name of the solution preference key to read

Returns String Current value of the solution preference key

Description

The extension.getSolutionSetting() method returns the current value of the keyName preference key in the solution
extension settings file.

If the keyName key does not exist in the file, an empty string is returned.

Implementation Note (v4): This method was previously named getSolutionPref().

extension.getSolutionSettingsFolder()

Folder extension.getSolutionSettingsFolder()

Returns Folder Solution extension settings folder

Description

The extension.getSolutionSettingsFolder() method returns a reference to the solution extension settings folder, where the
extension solution can add its files. The method returns a Folder object, that you can handle through the various properties
and methods of the Folder class.

If the extension solution settings folder does not already exist when this method is called, it is created.

Implementation Note (v4): This method was previously named getSolutionPrefFolder().

Example

You want to display the current solution extension preference folder path:

var prefs = studio.extension.getSolutionSettingsFolder();
studio.alert(prefs.path);

extension.getUserAndPassword()

Object | Null extension.getUserAndPassword(String keyName)

Parameter Type Description

keyName String Key name

26 of 39

Returns Null, Object Object with 'user' and 'password' properties

Description

The extension.getUserAndPassword() method returns an object containing the current solution's user and password
property values for the keyName key. This information must have been set using the extension.setUserAndPassword()
method.

If the method executes successfully, it returns an object with the following properties:

"user": user name
"password": user password (plain text)

The method returns null if the current solution's user and password are not found.

Example

If you store the following information:

studio.extension.setUserAndPassword("HelloServer2", "Jim", "456");

You can later call:

var myKey=studio.extension.getUserAndPassword("HelloServer2");
if(myKey != null) //HelloServer2 has been found for the current solution
 var user=myKey.user //user contains 'Jim'
 var password=myKey.password //password contains '456'

extension.isPrefFileExisting()

Boolean extension.isPrefFileExisting()

Returns Boolean True if a preference file exists, False otherwise

Description

The extension.isPrefFileExisting() method returns true if a preference file exists for the extension, and false otherwise.

It can be useful for example to restore the factory default settings.

extension.isSolutionSettingsFileExisting()

Boolean extension.isSolutionSettingsFileExisting()

Returns Boolean True if a solution settings file exists, False otherwise

Description

The extension.isSolutionSettingsFileExisting() method returns true if a settings file exists for the solution extension, and
false otherwise.

It can be useful, for example, to restore the factory default settings.

Implementation Note (v4): This method was previously named isSolutionPrefFileExisting().

extension.setPref()

Boolean extension.setPref(String keyName, String keyValue)

Parameter Type Description

keyName String Name of the preference key to write
keyValue String New value for the preference key

Returns Boolean True if the value was successfully set, false otherwise

Description

The extension.setPref() method writes a keyName/keyValue preference pair in the general extension preference file. For
more information about this file, please refer to the User preferences paragraph.

If the keyName preference was already defined in the file, its value is replaced by keyValue. If it was not defined, a new
keyName/keyValue preference pair is added to the file.

27 of 39

The method returns true if it was successful and false otherwise.

extension.setSolutionSetting()

Boolean extension.setSolutionSetting(String keyName, String keyValue)

Parameter Type Description

keyName String Name of the solution preference key to write
keyValue String New value for the solution preference key

Returns Boolean True if the value was successfully set, false otherwise

Description

The extension.setSolutionSetting() method writes a keyName/keyValue preference pair in the solution extension settings
file. For more information about this file, please refer to the Solution extension settings paragraph.

If the keyName preference is already defined in the file, its value is replaced by keyValue. If it is not defined, a new
keyName/keyValue preference pair is added to the file.

The method returns true if it is successful and false otherwise.

Implementation Note (v4): This method was previously named setSolutionPref().

Example

You want to set a value to a "color" key:

var isOK = studio.extension.setSolutionSetting("color", "blue");
if (isOK)
 studio.alert("Preference successfully saved");

extension.setUserAndPassword()

void extension.setUserAndPassword(String keyName, String user, String password)

Parameter Type Description

keyName String 'name' key associated with the identifiers
user String User name
password String User password

Description

The extension.setUserAndPassword() method allows you to store a user and password pair associated with the keyName
property for the current solution. This information is written in the user settings file. For more information about this file,
please refer to the User preferences paragraph.

Note that the password is stored as plain text in the preferences file.

This method makes it easy for your extension to handle one or more pair(s) of user/password identifiers for the same
solution. Use the extension.getUserAndPassword() method to get a user/password combination for a keyName.

Example

For your "Hello World" extension, you want to store a user name and a password used to connect to a server for the current
solution, named "Camping":

studio.extension.setUserAndPassword("HelloServer1", "John", "123");

Note: Usually, these values are entered by the user from an interface form.

When the code is executed, the following data is added to the user preference file (for example on Windows: C:\Users
\John\AppData\Roaming\Wakanda Studio\ExtensionPreferences\Hello World\Preferences.json):

"keyChains":[
 {
 "user":"John",
 "name":"HelloServer1",
 "solution":"C:/Wakanda solutions/Camping/Camping Solution/Camping.waSolution",
 "password":"123"
 }
]

28 of 39

API: Solution

The "Solution" theme methods allow you to get information from the Solution level.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

currentSolution.getExpandedFolders()

Array currentSolution.getExpandedFolders()

Returns Array Expanded folder(s)

Description

The currentSolution.getExpandedFolders() method returns the list of folders which are currently expanded in the solution
explorer window. The returned value is an array of Folder objects.

Example

Given the following items in the solution explorer, if your solution is located at the root folder:

var arrExpand = studio.currentSolution.getExpandedFolders();
// arrExpand[0].path contains "C:/TestHandler/TestHandler/"
// arrExpand[1].path contains "C:/TestHandler/TestHandler/WebFolder/"
// arrExpand[2].path contains "C:/TestHandler/TestHandler/WebFolder/styles/"
// arrExpand[3].path contains "C:/Wakanda/Wakanda Studio/Resources/Web Components/walib/WAF/medias/"

currentSolution.getSelectedItems()

Array currentSolution.getSelectedItems()

29 of 39

Returns Array Selected item(s)

Description

The currentSolution.getSelectedItems() method returns an array of selected files and folders in the Solution Explorer
window. This information is useful when you need to execute an action on the selected items.

The array order is based on the user selection sequence: first items selected are in the first positions of the array. If no item
is selected in the Solution Explorer, currentSolution.getSelectedItems() returns an empty array.

currentSolution.getSelectedItems() returns an array of objects of the File and/or Folder type.

Example

Given the following items selected in the Solution Explorer, if your solutions are located at the root folder:

var arrSel = studio.currentSolution.getSelectedItems();
// arrSel[0].path contains "C:/ExtendAClass/ExtendAClass/"
// arrSel[1].path contains "C:/ExtendAClass/ExtendAClass-Final/ExtendAClass-Final.waPerm"
// arrSel[2].path contains "C:/ExtendAClass/ExtendAClass-Final/ExtendAClass-Final.waModel.js"
// arrSel[3].path contains "C:/ExtendAClass/ExtendAClass-Final/ssjs/testAtt.js"
// in Wakanda v2 you get the path directly in arrSel[n]

currentSolution.getSolutionFile()

File currentSolution.getSolutionFile()

Returns File Current solution file

Description

The currentSolution.getSolutionFile() method returns a File object referencing the current solution file (named
'SolutionName.waSolution').

Example

Considering the following organization of files and folders on disk:

30 of 39

var solPath=studio.currentSolution.getSolutionFile().path;
 // returns C:\Wakanda solutions\MySolution\MySolution.waSolution

currentSolution.getSolutionName()

String currentSolution.getSolutionName()

Returns String Name of the current solution

Description

The currentSolution.getSolutionName() method returns the name of the currently opened solution.

Example

You want to display the name of the currently opened solution:

studio.alert(studio.currentSolution.getSolutionName()+" is open.");

currentSolution.restoreItemsIcon()

Boolean currentSolution.restoreItemsIcon(Array filePathsToSet)

Parameter Type Description

filePathsToSet Array Array of file full paths

Returns Boolean true if method executed successfully, false otherwise

Description

The currentSolution.restoreItemsIcon() method removes any overlay icon added to icons of files referenced by the
filePathsToSet parameter. Overlay icons can be added with the currentSolution.setItemsOverlayIcon() method.

In filePathsToSet, pass an array of strings (file full path names) to designate file icons whose overlay icon should be
removed.

If any item designated does not have an overlay icon or is a folder, it is ignored.

currentSolution.setItemsOverlayIcon()

void currentSolution.setItemsOverlayIcon(Array filePathsToSet , String iconFilePath [, String position])

Parameter Type Description

filePathsToSet Array Array of file full paths
iconFilePath String Path to the icon file
position String LowerRight (default), LowerLeft, UpperLeft or UpperRight

Description

The currentSolution.setItemsOverlayIcon() method allows you to add an overlay icon to a set of file icons in the solution
explorer area. This method can be used to 'mark' files that are involved in a specific action.

In filePathsToSet, pass an array of strings (file full path names) to designate files to receive an overlay icon. If a path
designates a folder, it is ignored.

In iconFilePath, pass the full path of the icon file to use. The file must be in the png format. It is recommended that you use
an 11x11 pixel icon.

The optional position parameter will define the position of the overlay icon on the solution file. You can pass one of the
following strings:

position Result

31 of 39

'UpperLeft'

'UpperRight'

'LowerLeft'

'LowerRight' (default if omitted)

An overlay icon will remain displayed during the entire session, unless you call currentSolution.setItemsOverlayIcon() again
or the currentSolution.restoreItemsIcon() method on the item.

Example

 You want to add a specific overlay icon to the currently selected items. In the index.js file of the extension, you can add the
following code:

var icons=[] // in;
var sel = studio.currentSolution.getSelectedItems();
for (var i = 0 ; i<sel.length;i++)
 icons[i] = sel[i].path;
var isOK = studio.currentSolution.setItemsOverlayIcon(icons,"C:/Graphic/mark.png","LowerLeft")

If the items selected include any folders, they are simply ignored.

32 of 39

API: Storage

Storage features are useful when an extension needs to share information between index.js and the Web Zone Dialog. The
Wakanda Studio Extension proposes a Storage object simply named storage, thus available through:

studio.extension.storage //extension storage object

Note: For more information about Storage objects in Wakanda, please refer to the Storage section.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.storage.clear()

void extension.storage.clear()

Description

The extension.storage.clear() method removes all the key/value pairs defined in the storage object.

extension.storage.getItem()

String | Null extension.storage.getItem(String keyName)

Parameter Type Description

keyName String Name of key to get the value

Returns Null, String Value associated to the key

Description

The extension.storage.getItem() method returns the current value associated with the given keyName.

If keyName is not an existing key in the storage object, the method returns Null.

extension.storage.key()

String extension.storage.key(Number keyIndex)

Parameter Type Description

keyIndex Number Key index number

Returns String Key name

Description

The extension.storage.key() method returns the key name for a given keyIndex in the storage object.

extension.storage.removeItem()

void extension.storage.removeItem(String keyName)

Parameter Type Description

keyName String Name of the key to remove

Description

The extension.storage.removeItem() method removes the keyName key and its associated value from the storage object.

extension.storage.setItem()

void extension.storage.setItem(String keyName, String keyValue)

Parameter Type Description

keyName String Name of the key to set
keyValue String Value of the key to set

33 of 39

Description

The extension.storage.setItem() method associates the keyValue to the given keyName in the storage object.

34 of 39

API: Studio

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

openSolution()

Boolean openSolution(String solutionFilePath)

Parameter Type Description

solutionFilePath String Solution file path

Returns Boolean True if the solution is opened, false otherwise

Description

The openSolution() method allows you to close the current solution and open a given solution.

In solutionFilePath, pass a Posix path corresponding to the full path of the solution to be opened.

If the designated solution is opened successfully, the method returns true. If the designated solution is already opened, the
method only returns true (the solution is now closed and reopened). Otherwise, if an error occurs (for example, the
solutionFilePath is not found), the method returns false.

Example

You want to close the current solution and open the "Panic" solution. You can write the following code:

var isOpen = studio.openSolution("C:/wakanda/Panic/Panic Solution/Panic.waSolution");
if(isOK)
 studio.alert("Panic solution opened successfully");

sendCommand()

Boolean sendCommand(String commandName)

Parameter Type Description

commandName String Action to execute

Returns Boolean true if the method executed successfully, false otherwise

Description

The sendCommand() method runs the Wakanda Studio menu command or another extensions' action defined in the
commandName parameter. The method returns true if the command was called with success, and false otherwise (for
example, if commandName does not exist).

To execute a command from the Wakanda Studio, pass one of the following strings in commandName:

About
Close
CloseSolution
NewCatalog
NewCSS
NewFile
NewFolder
NewGUI
NewHTML
NewJavascript
NewJSON
NewMobileGUI
NewPHP
NewProject
NewSolution
NewTabletGUI
NewTXT
NewWebComponent
NewXML
OpenFile
OpenSolution

35 of 39

Save
SaveAll
SaveAs

To execute an action from another extension, use the following format in commandName:

EXTENSIONNAME.ACTIONNAME

where EXTENSIONNAME is the folder name of extension and ACTIONNAME is the action message name.
When running sendCommand() to call the action of another extension, the destination extension will receive
"fromExtension" as message.event in the handleMessage function. For more information, please refer to handleMessage
Function paragraph.

studio.SystemWorker()

void studio.SystemWorker (commandLine , executionPath)

Parameter Type Description

commandLine String Command line to execute
executionPath String, Folder Directory where command is executed

Description

The studio.SystemWorker() constructor method allows you to create and handle a SSJS SystemWorker type object from your
extension code.

For more information about SystemWorker objects, please refer to the SystemWorker Instances description.

36 of 39

API: Web Zone Dialog

Wakanda Studio API provides ways to launch modal or non modal Web zones. It could be useful when an extension needs a
customizable dialog box.

Use the Wakanda Studio extension Storage object (studio.extension.storage) to share information between modal/modless
dialog boxes and index.js. If you want to get values from the dialog in index.js, the extension lifetime should be set as
application_lifetime.

Note: For more information about studio.extension.storage, please refer to the API: Storage chapter.

Using 'studio' Object

All Wakanda Extension APIs are available through the "studio" object. Thus, you must prefix each API call with 'studio.'

For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.quitDialog()

void extension.quitDialog()

Description

The extension.quitDialog() method closes the dialog box opened by extension.showModalDialog() or
extension.showModelessDialog().

After having opened an HTML dialog, it is recommended that you attach this method to an OK or a Cancel button (or both) in
your HTML page code.

extension.showModalDialog()

Boolean extension.showModalDialog(String htmlPage [,String arguments [,Object params [,String callback]]])

Parameter Type Description

htmlPage String Relative file path to the HTML page to load
arguments String Arguments to process
params Object Window parameters: {title (string), dialogwidth (number), dialogheight (number), resizable (boolean)}
callback String Callback function

Returns Boolean True if the dialog box was validated, false otherwise

Description

The extension.showModalDialog() method opens a modal dialog box displaying the htmlPage.

Pass in the htmlPage parameter a file path, relative to the extension folder, indicating which HTML page to load.

arguments is an object or a valid javascript value containing any parameters to pass to the HTML page.
On the HTML page side, you will access these arguments through the userArguments key of the Studio Storage object. For
example, you can use an instruction such as:

var myArgs = studio.extension.storage.getItem('userArguments');

You can pass in params an object containing title and size parameters as properties:

title (string): title for the dialog box. Example {title: "Select Settings"}. By default if this parameter is omitted, the title
area is empty.
dialogwidth (number): width of the dialog box in pixels. By default if this parameter is omitted, the width is 640 pixels.
dialogheight (number): height of the dialog box in pixels. By default if this parameter is omitted, the height is 400
pixels.
resizable (boolean): true if the dialog box must be resizable, false otherwise. By default if this parameter is omitted,
the dialog is resizable.

The HTML modal dialog is executed asynchronously. If you want to get a result from the HTML dialog, you need to define a
callback function, that will be called when the dialog is closed.
Again, you can use the Studio Storage object. For example, you could put the result value into the
studio.extension.storage.returnValue key and get this value in callback function. When the HTML dialog is closed, the
callback function is executed, then you get back in the index.js file any result from your dialog.

Note that the callback function should be defined in the same way as the other actions.

Example

37 of 39

We want to open a custom Settings dialog box to allow the user to set parameters.

In the index.js file, we added the following actions:

 //the settings action is called when the user clicks a button
actions.settings = function settings(message) {
 var option;
 option = DefaultOption;
 option = getOptFromPref(option); // gets current values from existing preferences
 studio.extension.showModalDialog(
 "settingsDialog.html",
 option,
 {title:"My Settings", dialogwidth:470, dialogheight:380, resizable:false},
 'writeOptions');
};

 //The "writeOptions" callback function
actions.writeOptions = function writeOptions(message) {
 var newOption = studio.extension.storage.returnValue; // gets values from the dialog
 if (newOption) //if there are new values
 {
 studio.extension.setPref("pref1", newOption.pref1);
 studio.extension.setPref("pref2", newOption.pref2);
 //...
 }
}

In the HTML page named "settingsDialog.html", you should have defined the corresponding functions, for example:

function init() {
 document.getElementById('pref1').value = studio.extension.storage.dialogArguments.pref1;
 document.getElementById('pref2').value = studio.extension.storage.dialogArguments.pref2;
 setValidation();
}

function getValueAndQuitHtmlPage() {
 var hpref1;
 var hpref2;

 hpref1= document.getElementById('pref1').value;
 hpref2= document.getElementById('pref2').value;

 studio.extension.storage.returnValue = {
 "pref1":hpref1,
 "pref2":hpref2
 };
 studio.extension.quitDialog();
}

extension.showModelessDialog()

Boolean extension.showModelessDialog(String htmlPage [,String arguments [,Object params [,String callback]]])

Parameter Type Description

htmlPage String Relative file path to the HTML page to load
arguments String Arguments to process
params Object Window parameters
callback String Callback function name

Returns Boolean True if the dialog box was validated, false otherwise

Description

The extension.showModelessDialog() method opens a non modal dialog box displaying the htmlPage.

This method is similar to the extension.showModalDialog() method, except that it opens a non modal dialog box.

extensions.resizeDialog()

void extensions.resizeDialog(Number dialogwidth, Number dialogheight)

Parameter Type Description

dialogwidth Number New width value
dialogheight Number New height value

Description

38 of 39

The extensions.resizeDialog() method allows you to resize the current dialog. The original size is defined in the dialog
creation method, such as extension.showModalDialog().

In dialogwidth, pass the new width of the dialog box in pixels. By default, the dialog width is 640 pixels.
In dialogheight, pass the height of the dialog box in pixels. By default, the dialog height is 400 pixels.

39 of 39

