
Workers

Wakanda Server uses Web workers to provide you with JavaScript multithreading capabilities. A Web worker is created by referencing an individual
JavaScript file. When the worker is instantiated, it then becomes an object residing in memory waiting to be called.
On the server, Wakanda fully implements the Web Workers W3C specifications, originally designed for the client, except that:

the wait() Wakanda‐specific method has been implemented to allow a parent thread to stay alive after it is executed.
the WorkerUtils API is partially implemented:

WindowTimers are supported, see setTimeout() and setInterval()).

the importScripts() API is also implemented.

There are two types of Web workers:

Dedicated workers have one "parent" and can only communicate with their parent or the workers they spawn. They are always part of an execution
tree. Dedicated Web Worker instances are created with the Worker() constructor method. Dedicated workers are described in the Dedicated Web
Workers (parent) and Dedicated Web Workers (child) sections.
Shared workers can be shared among several callers. They don't have a specific "parent". They are uniquely identified by the name of their JavaScript
files and a given name. Shared Web Worker instances are created with the SharedWorker() constructor method. Shared workers are described in the
Shared Web Workers (parent) and Shared Web Workers (child) sections.

For a detailed overview of Web workers, please refer to the Dedicated Workers and Shared Workers section in the "Wakanda Server‐Side Concepts" manual.

http://www.w3.org/TR/workers/
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/wait.301-688865.en.html
http://doc.wakanda.org/Global-Application/Application/setTimeout.301-797355.en.html
http://doc.wakanda.org/Global-Application/Application/setInterval.301-797443.en.html
http://doc.wakanda.org/Global-Application/Application/importScripts.301-953701.en.html
http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-child.201-689045.en.html
http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent.201-688512.en.html
http://doc.wakanda.org/Workers/Shared-Web-Workers-child.201-689050.en.html
http://doc.wakanda.org/Wakanda-Server-Side-Concepts/Programming-in-Wakanda-Server/Dedicated-Workers-and-Shared-Workers.300-720754.en.html

Dedicated Web Workers (child)

This section describes the properties and methods available at the child level of a dedicated Web worker.
The child level is the JavaScript thread where the Web worker script is running. Properties and methods available at the child level are defined in the global
Application object.
The Worker proxy object is defined in the parent thread; it allows parent and child threads to communicate. Properties and methods available in the
Worker object are defined in the Dedicated Web Workers (parent) section.

onmessage

Description

The onmessage property contains the function to call when a message is received.
This property is available:

in a parent Worker or SharedWorker (through the MessagePort) object: the function will be called when the child thread calls the parent thread.
in the child Web worker thread (global application level): the function will be called when the parent Worker or SharedWorker calls the child worker.

The function defined will receive a single object as a parameter. This object will have a property named data, which will contain a copy of any object
passed by the child or parent postMessage() call. For example, if you pass "event" as a parameter to the onmessage function in the parent process, the
event.data property will receive any object posted as a parameter by the child postMessage() callback.
Note: When modifying the onmessage attribute, you must be careful not to have a race condition because there is no synchronization mechanism.

Example

See the example for the onmessage property in the Dedicated Web Workers (parent) section.

close()

void close()

Description

The close() method ends the thread from which it is called.
This method can be called:

From a Worker or a SharedWorker parent thread where only the parent thread is closed.
If you want to close a dedicated child worker from the parent thread, you can call the terminate() method. If you call close() on a waiting parent
thread, all the dedicated workers spawned from that thread will receive a message to terminate (their internal "close" flag is set to true). If close() is
called during a callback in a wait(), this will exit the wait().
From a child thread.
In this case, the internal "close" flag is set to true. The wait() event loop is exited and the thread is closed.

The close() method effect is not immediate: the JavaScript interpreter will continue until the current execution (exiting the current callback) is finished.
All resources will then be freed up.

postMessage()

void postMessage(Mixed messageData)

Parameter Type Description
messageData Mixed Message to send to the parent Worker proxy object

Description

The postMessage() method allows you to exchange data between a parent Worker proxy and a dedicated Web worker.
This method is available:

in a parent Worker object: a postMessage() call from the parent Worker will be received as an object in the onmessage function of the worker script
(in the .data property).
in the child Web worker thread (global application object): a postMessage() call from the child script will be received as parameter to the function
called by the onmessage attribute of the parent worker (in the .data property).

In the messageData parameter, pass a value containing the data to exchange. Note that this data will be copied (cloned) before being exchanged. This
value can be of any primitive type. It can also be an object: supported data types depend on the structured clone algorithm. This algorithm itself is defined
in the HTML 5 specifications.

Wakanda currently supports the following object types as values in messageData: Boolean, Number, String, Date, RegExp, Array, Object, and
Functions.
The following object types are currently not supported in messageData objects: ImageData, File, Blob, and FileList.
Wakanda native objects, such as Entity collections or Datastore classes, are not supported in messageData objects.

Example

See the full example for the property in the Dedicated Web Workers (parent) section.

wait()

Boolean wait([Number timeout])

Parameter Type Description
timeout Number Timeout in milliseconds

Returns Boolean True if the worker is terminated; False otherwise

Description

The wait() method allows a thread to handle events and to continue to exist after the complete code executes.

http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent/MessagePort.303-689274.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/postMessage.301-688783.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/postMessage.301-688783.en.html
http://doc.wakanda.org/Workers-0.Beta/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/Workers-0.Beta/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/terminate.301-688823.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-child/onmessage.303-689062.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://www.whatwg.org/specs/web-apps/current-work/
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html

In the context of a Web worker, the wait() method allows a parent Web worker thread to handle child worker events. Since the parent‐child worker
communication is asynchronous (based on callbacks), this method is necessary in the parent script to allow the thread to keep from terminating after the
code execution and to listen for callbacks. During the waiting time, asynchronous callback events from Web workers are handled. When this method has
been called, the thread stays alive until you call close().
Note: The wait() method is also available for child workers although it is usually not necessary in this context. Child worker scripts always implicitly call
the wait mechanism.
The wait() method can also be used in the context of the main thread to allow asynchronous communication, for example when using Net ‐ Module or
System Workers. In this context, to stop the wait() loop, you need to use exitWait().
Note that while executing, the wait() method blocks the thread but still handles callbacks.
If you specify a value (in milliseconds) in the optional timeout parameter, wait() will run only during the time specified and then give the control back
after this time, returning false if the worker is not terminated.

http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/close.301-688908.en.html
http://doc.wakanda.org/SSJS-Modules/Net-Module.201-797601.en.html
http://doc.wakanda.org/System-Workers/System-Workers.100-775297.en.html
http://doc.wakanda.org/Global-Application/Application/exitWait.301-802516.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#

Dedicated Web Workers (parent)

Constructor: Worker()
Wakanda Server uses Web workers to provide you with JavaScript multithreading capabilities. A Web worker is created by referencing an individual
JavaScript file. When the worker is instantiated, it then becomes an object residing in memory waiting to be called.
Wakanda fully implements the Web Workers W3C specifications server‐side, which were originally designed for the client, except that:

the WorkerUtils API is not fully implemented (only WindowTimers are supported) and
the wait() Wakanda‐specific method has been implemented to allow a parent thread to stay alive after it is executed.

There are two types of Web workers:

Dedicated workers have one "parent" and can only communicate with their parent or the workers they spawn. They are always part of an execution
tree. Dedicated Web Worker instances are created with the Worker() constructor method.
Shared workers can be shared among several callers. They don't have a specific "parent". They are uniquely identified by the name of their JavaScript
files and a given name. Shared Web Worker instances are created with the SharedWorker() constructor method.

For a detailed example of how to use a dedicated Web worker, please refer to the Worker() method description.
Once instantiated, a "parent" Worker object can have several properties and methods described below.

onmessage

Description

The onmessage property contains the function to call when a message is received.
This property is available:

in a parent Worker or SharedWorker (through the MessagePort) object: the function will be called when the child thread calls the parent thread.
in the child Web worker thread (global application level): the function will be called when the parent Worker or SharedWorker calls the child worker.

The function defined will receive a single object as a parameter. This object will have a property named data, which will contain a copy of any object
passed by the child or parent postMessage() call. For example, if you pass "event" as a parameter to the onmessage function in the parent process, the
event.data property will receive any object posted as a parameter by the child postMessage() callback.
Note: When modifying the onmessage attribute, you must be careful not to have a race condition because there is no synchronization mechanism.

Example

Here is a basic example of how to create a dedicated worker:

var myWorker = new Worker('WorkersFolder/dedicatedWorker.js');
var myWorker.onmessage = function(event)
{
 var message = event.data;
 if (message.type == 'stopped')
 {
 close();
 }
}
myWorker.postMessage({type: 'process'});
wait();

The contents of the dedicatedWorker.js file is shown below:

function doSomeWork()
{
 // do some work, such as writing files, sending e-mails, etc.
}

function onmessage(event)
{
 var message = event.data;
 if (message.type == 'process')
 {
 doSomeWork();
 postMessage({type: 'stopped'});
 close();
 break;
 }
}

onerror

Description

The onerror property contains the function to call when an uncaught runtime script error occurs in one of the Worker's scripts.
This function will receive a single object, which has the following three attributes, as a parameter:

message: represents the error message.
filename: represents the absolute URL of the script where the error originally occurred.
lineno: represents the line number where the error occurred in the script.

Note: When modifying the onerror attribute, you must be careful not to have a race condition because there is no synchronization mechanism.

close()

void close()

Description

http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://www.w3.org/TR/workers/
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent/MessagePort.303-689274.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/postMessage.301-688783.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/postMessage.301-688783.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/MIME/MIMEMessagePart/fileName.303-806885.en.html

The close() method ends the thread from which it is called.
This method can be called:

From a Worker or a SharedWorker parent thread where only the parent thread is closed.
If you want to close a dedicated child worker from the parent thread, you can call the terminate() method. If you call close() on a waiting parent
thread, all the dedicated workers spawned from that thread will receive a message to terminate (their internal "close" flag is set to true). If close() is
called during a callback in a wait(), this will exit the wait().
From a child thread.
In this case, the internal "close" flag is set to true. The wait() event loop is exited and the thread is closed.

The close() method effect is not immediate: the JavaScript interpreter will continue until the current execution (exiting the current callback) is finished.
All resources will then be freed up.

postMessage()

void postMessage(Mixed messageData)

Parameter Type Description
messageData Mixed Message to send to the dedicated worker

Description

The postMessage() method allows you to exchange data between a parent Worker proxy and a dedicated Web worker.
This method is available:

in a parent Worker object: a postMessage() call from the parent Worker will be received as an object in the onmessage function of the worker script
(in the .data property).
in the child Web worker thread (global application object): a postMessage() call from the child script will be received as parameter to the function
called by the onmessage attribute of the parent worker (in the .data property).

In the messageData parameter, pass a value containing the data to exchange. Note that this data will be copied (cloned) before being exchanged. This
value can be of any primitive type. It can also be an object: supported data types depend on the structured clone algorithm. This algorithm itself is defined
in the HTML 5 specifications.

Wakanda currently supports the following object types as values in messageData: Boolean, Number, String, Date, RegExp, Array, Object, and
Functions.
The following object types are currently not supported in messageData objects: ImageData, File, Blob, and FileList.
Wakanda native objects, such as Entity collections or Datastore classes, are not supported in messageData objects.

Example

See the full example for the onmessage property in the Dedicated Web Workers (parent) section.

Example

This dedicated worker can be used to create a large number of entities in the background.
The parent worker code:

var worker = new Worker("create_entities.js");
worker.postMessage(100000); // we want to create 100,000 entities

The contents of the create_entities.js dedicated worker file is shown below:

function createEntities (n)
{
 var i;
 for (i = 0; i < n; i++)
 {
 var d = new Date(); //gets data
 var entry = new Timestamp(); //creates a new entity in the Timestamp model

 entry.testValue= d.toString(); //stores data
 entry.save(); // saves the entity
 }
 return i;
}

onmessage = function (event)
{
 if (event.data >= 0) // event.data gets the current number of entities sent by the parent worker
 {
 createEntities(event.data);
 }
 close(); // closes the worker
}

terminate()

void terminate()

Description

The terminate() method allows you to terminate the dedicated worker execution. It closes the parent worker and sets the dedicated child worker "close"
flag to true.
Note: You can also end a dedicated worker child thread by calling the close() method from inside the thread.
This method will allow the worker to complete its currently running code and, at the next point where it can process a new event, it will close, ignoring any
queued events. If you want to allow the worker to complete all its queued events, simply pass it a new event telling it to close (see close()).
When a parent worker finishes its execution for any reason, the terminate() method is automatically called on all its dedicated child workers.
Since terminate() waits until the currently running worker code ends, the effect may not be immediate (in particular, if the dedicated worker is executing

http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/terminate.301-688823.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-child/onmessage.303-689062.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://www.whatwg.org/specs/web-apps/current-work/
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers-0.Beta/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/Workers-0.Beta/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-child/close.301-689230.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/close.301-688908.en.html

a loop). Therefore, it is very important to avoid using "while (true) {}" loops in dedicated workers. We recommend that you always execute asynchronous
calls (using onmessage callbacks).

wait()

Boolean wait([Number timeout])

Parameter Type Description
timeout Number Timeout in milliseconds

Returns Boolean True if the worker is terminated; False otherwise

Description

The wait() method allows a thread to handle events and to continue to exist after the complete code executes.
In the context of a Web worker, the wait() method allows a parent Web worker thread to handle child worker events. Since the parent‐child worker
communication is asynchronous (based on callbacks), this method is necessary in the parent script to allow the thread to keep from terminating after the
code execution and to listen for callbacks. During the waiting time, asynchronous callback events from Web workers are handled. When this method has
been called, the thread stays alive until you call close().
Note: The wait() method is also available for child workers although it is usually not necessary in this context. Child worker scripts always implicitly call
the wait mechanism.
The wait() method can also be used in the context of the main thread to allow asynchronous communication, for example when using Net ‐ Module or
System Workers. In this context, to stop the wait() loop, you need to use exitWait().
Note that while executing, the wait() method blocks the thread but still handles callbacks.
If you specify a value (in milliseconds) in the optional timeout parameter, wait() will run only during the time specified and then give the control back
after this time, returning false if the worker is not terminated.

Worker()

void Worker(String scriptPath)

Parameter Type Description
scriptPath String Pathname to JavaScript file

Description

The Worker() method is the constructor of the dedicated class objects of the Worker type. It allows you to create new Dedicated Web Workers (parent)
objects on the server. The proxy object allows the parent to exchange data with a dedicated worker.
Dedicated workers are Web workers that can only be addressed from the parent thread that created them, while Shared workers are Web workers that can
be addressed from any thread. Dedicated workers end when the parent thread ends, while shared workers continue to exist even if the thread that spawned
them ends. For more information, refer to the Dedicated Web Workers (parent) class description.
In the scriptPath parameter, pass a path to a project‐specific JavaScript file. If you pass the file with a relative path, Wakanda assumes that the project
folder is the default folder. The referenced file must have valid statements that result in a worker.
Note: If the worker’s JavaScript file has any code outside of all its function declarations, Wakanda considers it as initialization code for the worker and
executes it when the worker is created.

Example

The following is a simple example of a parent and child exchanging messages. Below is the parent.js script:

// A dedicated web worker is created by calling the Worker constructor
// with the name of the JavaScript file to execute (located in the default folder).
// This will return a proxy object (worker) so that it will be possible to communicate with the child.
var worker = new Worker('child.js');

// Define the message callback that will be triggered each time the child sends a message.
var state = 0;
worker.onmessage = function (event)
{
 if (state == 0) {
 // Child has received our initial message and this is its reply.
 console.log(event.data); // "Child started".
 // Send a message to request termination.
 worker.postMessage('Please quit.');
 // Go back to idle, waiting for reply from child.
 state = 1;

 } else { // state == 1
 // Child has terminated.
 console.log(event.data); // Child finished.
 // We can terminate by calling close(), which will exit the wait().
 close();
 }
}

// Send a message to the child to trigger message exchange.
worker.postMessage("Go ahead.");

// Asynchronous execution
wait();

// After close() is called in callback, we are done.
console.log('Parent has terminated.');

Here is the child.js script:

// Child execution is asynchronous.
// onmessage is a global attribute containing the callback to trigger each time a message is received.
var state = 0;

http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/close.301-688908.en.html
http://doc.wakanda.org/SSJS-Modules/Net-Module.201-797601.en.html
http://doc.wakanda.org/System-Workers/System-Workers.100-775297.en.html
http://doc.wakanda.org/Global-Application/Application/exitWait.301-802516.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#

onmessage = function (event) {
 if (state == 0) {
 // Waiting for a message from parent, just received it
 console.log(event.data); // "Go ahead"
 // Reply to parent. Note that postMessage() is a global method. It will send a message to the parent's
 // worker proxy object onmessage attribute.
 postMessage("Child started");

 // Go back to idle, waiting for next message.
 state = 1;

 } else { // state == 1
 // Waiting for a message from parent to terminate, just received it.
 console.log(event.data); // "Please quit".
 // Sends a message back to parent, we're done.
 postMessage("Child finished");
 // Terminate.
 close();
 }
}

Note that there is no call to wait(). By default, the child will wait until the end of the script, and service asynchronous callbacks.
In this example, the JavaScript code does nothing except for defining a callback. Everything is done by the callback.

http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/wait.301-688865.en.html

Shared Web Workers (child)

This section describes the properties and methods available at the level of the "child" shared Web worker.
Actually, there is no real "child" level for shared Web workers because they don't have a specific "parent". Once created, a shared worker can be shared
among several callers. There is no special link between the shared worker and the thread that created it. They are uniquely identified by the name of their
JavaScript files and a given name.
Properties and methods that are available at the child level are defined in the global Application object.
The SharedWorker proxy object is defined in the parent thread; it allows worker threads to communicate. Properties and methods available in the
SharedWorker object are defined in the Shared Web Workers (parent) section.

onconnect

Description

The onconnect property contains the function to call when a thread creates a new SharedWorker proxy object to connect to the current shared worker.
The function defined will receive a single object as a parameter, which contains a copy of the MessagePort object created in the "parent" SharedWorker.
This object will have a property named ports, which is an array of message ports. ports[0] is the message port to use for communication. You can access the
MessagePort properties through ports[0].
For example, if you pass "event" as a parameter to the onconnect function, you must first access the event.port[0] property to access the data posted in
the MessagePort property of the SharedWorker proxy object:

onconnect = function (msg)
{
 var msgPort = msg.ports[0]; // access the communication port
 msgPort.onmessage = function(event) // access the MessagePort data
 {
 var message = event.data;
 ...
 }
}

close()

void close()

Description

The close() method ends the thread from which it is called.
This method can be called:

From a Worker or a SharedWorker parent thread where only the parent thread is closed.
If you want to close a dedicated child worker from the parent thread, you can call the terminate() method. If you call close() on a waiting parent
thread, all the dedicated workers spawned from that thread will receive a message to terminate (their internal "close" flag is set to true). If close() is
called during a callback in a wait(), this will exit the wait().
From a child thread.
In this case, the internal "close" flag is set to true. The wait() event loop is exited and the thread is closed.

The close() method effect is not immediate: the JavaScript interpreter will continue until the current execution (exiting the current callback) is finished.
All resources will then be freed up.

wait()

Boolean wait([Number timeout])

Parameter Type Description
timeout Number Timeout in milliseconds

Returns Boolean True if the worker is terminated; False otherwise

Description

The wait() method allows a thread to handle events and to continue to exist after the complete code executes.
In the context of a Web worker, the wait() method allows a parent Web worker thread to handle child worker events. Since the parent‐child worker
communication is asynchronous (based on callbacks), this method is necessary in the parent script to allow the thread to keep from terminating after the
code execution and to listen for callbacks. During the waiting time, asynchronous callback events from Web workers are handled. When this method has
been called, the thread stays alive until you call close().
Note: The wait() method is also available for child workers although it is usually not necessary in this context. Child worker scripts always implicitly call
the wait mechanism.
The wait() method can also be used in the context of the main thread to allow asynchronous communication, for example when using Net ‐ Module or
System Workers. In this context, to stop the wait() loop, you need to use exitWait().
Note that while executing, the wait() method blocks the thread but still handles callbacks.
If you specify a value (in milliseconds) in the optional timeout parameter, wait() will run only during the time specified and then give the control back
after this time, returning false if the worker is not terminated.

http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent.201-688512.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent/MessagePort.303-689274.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent/MessagePort.303-689274.en.html
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent/MessagePort.303-689274.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/terminate.301-688823.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/close.301-688908.en.html
http://doc.wakanda.org/SSJS-Modules/Net-Module.201-797601.en.html
http://doc.wakanda.org/System-Workers/System-Workers.100-775297.en.html
http://doc.wakanda.org/Global-Application/Application/exitWait.301-802516.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#

Shared Web Workers (parent)

Constructor: SharedWorker()
Wakanda Server provides JavaScript multithreading capabilities using Web workers. A Web worker is created by referencing an individual JavaScript file.
When the worker is instantiated, it then becomes an object residing in memory waiting to be called.
Wakanda fully implements the Web Workers W3C specifications server‐side, which was originally designed to work client‐side.
There are two types of Web workers:

Dedicated workers have one "parent" and can only communicate with their parent or the workers they spawn. They are always part of an execution
tree. Dedicated Web Worker instances are created with the Worker() constructor method.
Shared workers can be shared among several callers. They don't have a specific "parent". They are uniquely identified by the name of their JavaScript
files and a given name. Shared Web Worker instances are created with the SharedWorker() constructor method (available at the global application
level).

For a detailed example of how to create and use a shared Web worker, please refer to the SharedWorker() method description.
Once instantiated, a SharedWorker object can have several properties and methods, which are described below.

port

Description

The port property is the MessagePort object of the SharedWorker. This object contains the tools for the SharedWorker proxies to communicate with the
shared Web workers. When creating or connecting to a shared worker through the SharedWorker object, the whole port object will be sent to the shared
worker.
Here are the contents of the object:

MessagePort {
 attribute onmessage; // Callback to trigger when a message is received
 attribute onerror; // Callback function to trigger when an error is received
 void postMessage(in messageData); // Method to send a message to a worker
};

For more information about these members, refer to the corresponding sections in the Dedicated Web Workers (parent) chapter:

onmessage
onerror
postMessage()

close()

void close()

Description

The close() method ends the thread from which it is called.
This method can be called:

From a Worker or a SharedWorker parent thread where only the parent thread is closed.
If you want to close a dedicated child worker from the parent thread, you can call the terminate() method. If you call close() on a waiting parent
thread, all the dedicated workers spawned from that thread will receive a message to terminate (their internal "close" flag is set to true). If close() is
called during a callback in a wait(), this will exit the wait().
From a child thread.
In this case, the internal "close" flag is set to true. The wait() event loop is exited and the thread is closed.

The close() method effect is not immediate: the JavaScript interpreter will continue until the current execution (exiting the current callback) is finished.
All resources will then be freed up.

SharedWorker()

void SharedWorker(String scriptPath [, String workerName])

Parameter Type Description
scriptPath String Pathname to JavaScript file
workerName String Name of the worker to execute

Description

The SharedWorker() method is the constructor of the SharedWorker type class objects. It allows you to create new Shared Web Workers (parent) objects
on the server.
Shared workers are Web workers that can be addressed from any thread, while dedicated workers are Web workers that can only be addressed from the
parent thread that created them. Dedicated workers end when the parent thread ends, while shared workers continue to exist even if the thread that
spawned them ends. For more information, refer to the Dedicated Web Workers (parent) class description.
Shared workers are uniquely identified by their script file names and a given name. The constructor will spawn a new shared worker thread if it does not
exist yet.
In the scriptPath parameter, pass a path to a project‐specific JavaScript file. If you pass the file with a relative path, Wakanda assumes that the project
folder is the default folder. The referenced file must have valid statements that result in a worker.
Note: If the worker’s JavaScript file has any code outside of all its function declarations, Wakanda considers it as initialization code for the worker and
executes it when the worker is created.
In workerName, pass the name of the shared worker you want to create (if you omit the workerName parameter, the shared worker will be created with an
empty string as its name). This shared worker name will be used to reference the shared worker for all the threads. When other threads want to interact
with an already existing shared worker, they do so by executing the same code as if they are creating it, but instead receive a reference to this existing
shared worker.

Example

This shared worker creates an entity every second for 5 seconds, and sends info to the log. Here is the launcher function:

function doTestSharedWorker()

http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://www.w3.org/TR/workers/
http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/onmessage.303-688624.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/onerror.303-688670.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/postMessage.301-688783.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/terminate.301-688823.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/Workers/Shared-Web-Workers-parent.201-688512.en.html
http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent.201-688495.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#

{
 var theWorker = new SharedWorker("SendRequestsWorker.js", "SendRequests");
 var thePort = theWorker.port; // MessagePort
 thePort.onmessage = function(evt)
 {
 var message = evt.data;
 switch(message.type)
 {
 case 'error':
 debugger;
 break;
 }
 }
}
doTestSharedWorker();

Here is the code of the SendRequestsWorker.js file:

function doSendRequests()
{
 count++;
 console.log('Count: ' + count);

 var theDate = new Date();
 if((theDate - startDate) < theDuration) {
 console.log('creating');
 var z = new ds.Util({
 testValue : count,
 dateValue : theDate
 });
 z.save();
 console.log('' + ds.Util.length);
 } else {
 console.log('closing');
 close();
 }
}

onconnect = function(msg)
{
 var thePort = msg.ports[0];
 console.log('In onconnect');
 thePort.postMessage("OK");
}
console.log('Start of test...');

var count = 0;
var startDate = new Date();
var theDuration = 5000;

setInterval(doSendRequests, 1000) //Run every second

Example

Here is a basic example of creating a shared worker: the purpose of this datastore class method is to respond to a browser‐side request for information on
the status of the “TaskMgr” shared worker.

getTaskManagerStatus:function()
{
var tmRef = 0;
var tmInfo = {taskCount:0, errorCode:0};
var taskMgr = new SharedWorker('WorkersFolder/TaskMgr.js', 'TaskMgr');
var thePort = taskMgr.port; //MessagePort
thePort.onmessage = function(event)
{
 var message = event.data;
 switch (message.type)
 {
 case 'connected':
 tmRef = message.ref;
 thePort.postMessage({type: 'report', ref: tmRef});
 break;

 case 'update':
 taskMgrInfo.taskCount = message.count;
 return taskMgrInfo;
 thePort.postMessage({type: 'disconnect', ref: tmRef});
 close();
 break;

 case 'error':
 taskMgrInfo.errorCode = message.errorCode;
 return taskMgrInfo;
 close();
 break;
 }
 }
 wait();
}

The corresponding “TaskMgr” worker might be something like this:

function doSomeWork()
{
 try {
 // do something
 tmCount += 1;
 }
 catch(e){
 tmError = 1;
 }
}

onconnect = function(msg) // called when a new SharedWorker is created
{
 var thePort = msg.ports[0];
 tmKey += 1;
 tmConnections[tmKey] = thePort;
 thePort.onmessage = function(event)
 {
 var message = event.data;
 var fromPort = tmConnections[message.ref];
 switch (message.type)
 {
 case 'report':
 if (tmError!= 0)
 {
 fromPort.postMessage({type: 'error', errorCode: tmError });
 close();
 }
 else
 {
 fromPort.postMessage({type: 'update', count: tmCount});
 }
 break;

 case 'disconnect':
 tmConnections[message.ref] = null;
 break;
 }
 }
 thePort.postMessage({type: 'connected', ref: tmKey});
}

var tmCount = 0;
var tmKey = 0;
var tmError = 0;
var tmConnections = [];
setInterval(doSomeWork(), 1000) //Run every second

wait()

Boolean wait([Number timeout])

Parameter Type Description
timeout Number Timeout in milliseconds

Returns Boolean True if the worker is terminated; False otherwise

Description

The wait() method allows a thread to handle events and to continue to exist after the complete code executes.
In the context of a Web worker, the wait() method allows a parent Web worker thread to handle child worker events. Since the parent‐child worker
communication is asynchronous (based on callbacks), this method is necessary in the parent script to allow the thread to keep from terminating after the
code execution and to listen for callbacks. During the waiting time, asynchronous callback events from Web workers are handled. When this method has
been called, the thread stays alive until you call close().
Note: The wait() method is also available for child workers although it is usually not necessary in this context. Child worker scripts always implicitly call
the wait mechanism.
The wait() method can also be used in the context of the main thread to allow asynchronous communication, for example when using Net ‐ Module or
System Workers. In this context, to stop the wait() loop, you need to use exitWait().
Note that while executing, the wait() method blocks the thread but still handles callbacks.
If you specify a value (in milliseconds) in the optional timeout parameter, wait() will run only during the time specified and then give the control back
after this time, returning false if the worker is not terminated.

http://doc.wakanda.org/Workers/Dedicated-Web-Workers-parent/close.301-688908.en.html
http://doc.wakanda.org/SSJS-Modules/Net-Module.201-797601.en.html
http://doc.wakanda.org/System-Workers/System-Workers.100-775297.en.html
http://doc.wakanda.org/Global-Application/Application/exitWait.301-802516.en.html
http://doc.wakanda.org/ManualPrint/1/688487/print.en.html#

	Workers
	Dedicated Web Workers (child)
	onmessage
	close()
	postMessage()
	wait()

	Dedicated Web Workers (parent)
	onmessage
	onerror
	close()
	postMessage()
	terminate()
	wait()
	Worker()

	Shared Web Workers (child)
	onconnect
	close()
	wait()

	Shared Web Workers (parent)
	port
	close()
	SharedWorker()
	wait()

