
http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Wakanda Server Administration
Managing Wakanda Server

Configuring the Connection between the Studio and the Server

You can manage Wakanda Server from Wakanda Studio. The actions that you are allowed to do
depend on the way the two applications are connected:

Local connection (both Wakanda Server and Wakanda Studio are running on the same
computer and share the same solution on the file system). In this case, you can:

Start and stop the Wakanda Server
Load a solution and edit all parts of the solution and its project(s).
Open and close a debug connection

Remote connection (Wakanda Server and Wakanda Studio are not running on the same
computer). Server and Studio must use the same solution on each machine. You need to
make sure that both solutions are identical (for example, using standard synchronization
tools).
In this case, the only action available from the Studio is:

Open and close a debug connection

In Wakanda Studio, you can get information about the running server by placing the cursor above
the green icon at the bottom left of your window. For a local connection, the path to the server
application is displayed in the tip:

Configuring a Local Connection

To be able to open a local connection to Wakanda Server from Wakanda Studio (both applications
are running on the same machine), you have two possibilities:

Install Wakanda Server and Wakanda Studio subfolders (packages on Mac OS) in the same
folder and name them "Wakanda Server" and "Wakanda Studio".
Here is the typical installation on Mac OS with Wakanda Server and Wakanda Studio in the
same folder:

In this case, both applications will be connected automatically (unless another "preferential
server" has been set for a solution, see Defining a Preferential Server).

http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html#929299

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Install Wakanda Server and Wakanda Studio subfolders wherever you want on the same
machine and launch Wakanda Studio. In this case, the first time that the Wakanda Studio
will need to launch the server, a standard open dialog box will be displayed, allowing you to
designate the Wakanda Server application:

Debugging on a Remote Server

You can connect to a remote Wakanda Server from Wakanda Studio (when the applications are
running on different machines). However, this functionality only allows you to open a debug
connection with the server. You can trace code execution at runtime and add/remove break
points.

Configuration

To be able to use the remote debugging feature, you need to have the following elements:

Two computers: A (running Studio for debug) and B (running server).
The following configurations are supported:

Server on Mac OS Server on Windows Server on Linux
Studio on Mac OS x x x
Studio on Windows x x x
Studio on Linux n/a n/a n/a

A copy of the same solution must be installed on each computer. The solution should
contain at least one server-side JavaScript file.

On the server machine, all the following TCP ports should not be blocked by any network
devices (firewall, proxy...) for the Studio:

admin port (usually 8080)
SSL admin port (usually 4433)
application port(s) (usually 8081, 8082...)
remote debugger port(s) (usually 1919)

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Starting Remote Debugging

To run a remote debugging session between computer A (debugger) and computer B (server):

1. Launch the Wakanda Server on computer B and open the solution.
If the server is launched through a Studio, make sure the local debugger is NOT launched
(you may have to stop it -- you can even close the Studio).

2. Open the same solution with Wakanda Studio on computer A.
Do not accept to start the server if you are prompted to (it depends on local settings).

3. On computer A, select the Connect to Other Server... item in the Run menu:

The following dialog box is displayed:

This dialog box lists all the Wakanda Server solutions broadcasted over the local network
(this feature uses the Bonjour protocol).

4. Fill the IP address and Port of the server (computer B).
You have to enter the SSL Admin port (usually 4433).

5. Click Connect.
Wakanda Studio opens the debug socket on the server and, if the Studio and the Server are
running the same solution, a debug connection is opened. You will get the message: "Studio
is connected to xxx.xxx.xxx.xxx:xxxx"
Note: The debugging port will be used automatically. Keep in mind that, unlike other ports,
the debugging port is not defined in a setting file. It is dynamically assigned by the server:
first, it tries to open port 1919; if this fails, it then tries 1920, 1921, and so on until an
available port is found.

6. On computer A, you can add a break point in the JavaScript file then execute Run File.

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

To close the connection, you just need to click on the Stop debug button of the toolbar.

Note: If Wakanda's Controlled Admin Access Mode has been activated for your solution, you will
be prompted to enter a username and a password to connect to the server.

Only users belonging to the "Admin" group can connect remotely to a secured solution. For more
information, refer to the Configuring Admin Access Control section.

Defining a Preferential Server

You can define a "preferential server" (local or remote) for a given solution. Once set, the
preferential server is stored in the solution settings and will be used by default with the solution.

To define a preferential server for a solution, right-click on the solution name in the Explorer area
and choose Select Wakanda Server Location... in the contextual menu:

The following dialog box is displayed:

http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html#958642
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Three options are available to define the preferential server:

Default Server: use a local Wakanda Server located beside the Wakanda Studio on the
same machine (see Configuring a Local Connection)
Local Server: use a local Wakanda Server but not the Default Server. You need to define
the location of the Wakanda Server application file on your disk by clicking the Browse
button.
Remote Server: use the remote Wakanda Server to which Wakanda Studio is currently
connected through a debug connection (see Connecting to a Remote Server). This option is
not available if no debug connection is currently open.

Starting and Stopping Wakanda Server

In Wakanda Studio, a green icon at the bottom left side of your window indicates if the server (as
well as the debugger) is running:

Wakanda server is running

Specific features allow you to:

Start and stop the Wakanda Server automatically when opening or closing a solution
Start and stop the Wakanda Server manually

Note: For these features to work, the Wakanda Studio must know the current location of the
Server. For more information, please refer to the Configuring the Connection between the Studio
and the Server section.

You can also launch Wakanda Server using a command line, without having to use Wakanda
Studio (see the Launching Wakanda Server using a Command Line section).

Note: If the Wakanda admin access control is activated for the solution, you will be prompted to
enter a login and a password to start or stop the server. Only users belonging to the "Admin"
group can administrate the server. For more information, please refer to the Configuring Admin
and Debug Access Control section.

Automatic Handling

When you first open a solution with Wakanda Studio, you are asked to start automatically the
server when opening the solution in the Studio:

http://doc.wakanda.org/Wakanda-Server-Administration-0.Beta/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html#583644
http://doc.wakanda.org/Wakanda-Server-Administration-0.Beta/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html#929281
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Launching-Wakanda-Server-using-a-Command-Line.300-583228.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-and-Debug-Access-Control.300-954274.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-and-Debug-Access-Control.300-954274.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

If you click Yes, the server will be automatically launched when you open the solution
If you click No, the server will not be automatically launched when you open the solution.
You will need to launch it manually.

The same setting can be set when you close the solution. The following dialog box is displayed:

If you click Yes, the server will be automatically stopped when you close the solution
If you click No, the server will not be automatically stopped when you close the solution.
You will need to stop it manually.

If you check "Do not ask again", the corresponding dialog will not be displayed anymore for any
solution.

You can also manage the automatic opening and closing of the Wakanda Server for each solution
using the contextual menu in the explorer:

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Manual Handling

You can start and stop the Wakanda Server at any time when the Wakanda Studio is launched
and when a valid solution is open.

To start the server, you select Start Solution Server in the Run menu or click on the Start
button:

Once the server is running, you can select Stop Solution Server in the Run menu or click on
the Stop button:

Launching Wakanda Server using a Command Line

You can use a command line to launch the Wakanda Server on all platforms (Windows, Mac OS
and Linux). As parameters, you can pass the solution to open as well as the ServerAdmin project
HTTP port.

Thanks to this feature, you can open a solution automatically, for example at startup. You can
also launch several Wakanda servers with different default administration projects.

The syntax is:

Wakanda_server_name [solution_path] [--admin-port=http_port_number] [--admin-ssl-
port=http_port_number] [--debug-off]

where:

Wakanda_server_name is the full pathname of the server application ("Wakanda Server.exe"
on Windows and "Wakanda Server.app" on Mac OS)
solution_path is the full pathname of the solution to open. The path should be expressed in
the system syntax. If you do not pass this parameter, the default solution is opened.
--admin-port=http_port_number is an optional parameter that sets the HTTP port number
of the built-in ServerAdmin project. The ServerAdmin project is the default administration
project. It is published on port 8080 by default. By setting a different value, you can publish
this default project on another port, allowing you to launch several Wakanda Servers
running the default administration project. The HTTP port that you set is used during the
entire server session, even if another solution is opened.
If the opened solution already contains an administration project (project with key

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

administrator="true" in the myproject.waSettings file), the --admin-port parameter is
ignored.
--admin-ssl-port=http_port_number is an optional parameter that sets the HTTPS port
number of the built-in ServerAdmin project. It is published on port 4433 by default. By
setting a different value, you can publish this default project on another port. The HTTPS
port that you set is used during the entire server session, even if another solution is opened.

--debug-off is an optional parameter that disables Debugger features in Wakanda Server.
When this parameter is passed, the debugging interface is not launched on the server
side. This parameter is useful when the solution is used in a production environment.

Warning: The shells do not accept spaces or / symbols in command lines. To avoid
interpretation errors, insert parameters between double quotes "" (see examples).

Launching Several Instances

You can launch several instances of a Wakanda Server from the same bundle.

For this, you just need to call several command lines and specify the HTTP and SSL ports for the
ServerAdmin project into each command line, using --admin-port and --admin-ssl-port arguments.
You have to ensure that there a no port conflicts between your different opened projects.

The purpose of these parameters is to resolve potential HTTP and SSL ports conflicts between the
different ServerAdmin projects (there is one default ServerAdmin project per solution.

Default values are 8080 for the HTTP port and 4433 for the SSL port (see Examples 2)

Start / Stop / Status Service on Linux

If you have installed Wakanda Server for Linux through the All-In-One installer, you benefit from
a start / stop / status service that you can use to manage Wakanda Server.

Command lines for this service are the following:

- Sudo service wakanda start
- Sudo service wakanda stop
- Sudo service wakanda status

Examples

(Windows) Launching the Wakanda server and opening the default solution (containing the
ServerAdmin project, published on port 8080)
"C:\Wakanda\Wakanda Server.exe"

(Windows) Launching the Wakanda server, opening the default solution (containing the
ServerAdmin project) and publishing the ServerAdmin project on the HTTP port 8090
"C:\Wakanda\Wakanda Server.exe" "--admin-port=8090"

(Windows) Launching the Wakanda server and opening the "invoices" solution. If this
solution does not contain an administration project (administrator="false" in settings), the
ServerAdmin project is published on the HTTP port 8090
"C:\Wakanda\Wakanda Server.exe" "C:\solutions\invoices.waSolution" "--admin-
port=8090"

(Mac OS) Launching the Wakanda server and opening the "invoices" solution. If this solution
does not contain an administration project (administrator="false" in settings), the
ServerAdmin project is used and published on the default HTTP port (8080)
/Volumes/Mac\ HD/Applications/Wakanda/Wakanda\ Server.app/Contents/MacOS/Wakanda\

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Debugger.200-299193.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Server /Volumes/Mac\ HD/Solutions/invoices.waSolution

(Linux) Launching the Wakanda server and opening the default solution (containing the
ServerAdmin project, published on port 8080)
./wakanda

(Linux) Launching the Wakanda server and opening the "invoices" solution. If this solution
does not contain an administration project (administrator="false" in settings), the
ServerAdmin project is used and published on the HTTP port 8080
./wakanda /home/AdminUserName/invoices.waSolution

Examples 2

(Windows) Launching a Wakanda server and opening the default solution (containing the
ServerAdmin project, published on HTTP port 8080 and SSL port 4433):
"C:\Wakanda\Wakanda Server.exe"

(Windows) Launching another Wakanda server and opening the default solution (containing
the ServerAdmin project, published on HTTP port 80 and SSL port 443):
"C:\Wakanda\Wakanda Server.exe" --admin-port=80 --admin-ssl-port=443

(Windows) Launching another Wakanda server and opening a solution. The ServerAdmin
project is published on HTTP port 81 and SSL port 444:
"C:\Wakanda\Wakanda Server.exe" --admin-port=81 --admin-ssl-port=444

Configuring secure connections (SSL/TLS)

The Wakanda HTTP server provides support of secure connections through HTTPS. To implement
secure connections in Wakanda, you need to:

get a SSL/TLS certificate
install the appropriate files in your Wakanda project folder
configure the relevant settings for your project

How to get a certificate?

A Wakanda server working in secure mode means that you need a digital SSL/TLS certificate.
This certificate references various information such as the site ID as well as the public key used
to communicate with the site. This certificate is transmitted to the Web clients (browsers)
connecting to this site. Once the certificate has been identified and validated, the communication
is made in secure mode.

SSL/TLS certificates can be delivered by a Certification Authority or be self-signed. A well known
Certification Authority (such as Verisign® or Thawte®) will provide certificates that will be
authorized by many browsers (i.e. automatically validated), but the price will be expensive.
Note however that the certificate only manages the 'authentication' part of the secured
connection. When a certificate is not referenced in the browser's properties (this is the case for
self-generated certificates), the user is just asked to validate it manually. Once the certificate is
accepted, the connection is established in secure mode and is encrypted. During the development
phase, it is a good idea to use self-signed certificates.

Applying for a certificate

To get a SSL certificate from a certification authority, you need to:

generate a private key on your Wakanda server
generate a CSR (Certificate Signing Request)
send the CSR to a certification authority or use it to generate a self-signed certificate

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

To achieve this, you can use a tool such as openSSL. For example, the following command line
uses openSSL to generate both the private key file and a certificate signing request (CSR) file:

openssl req -new -nodes -newkey rsa:2048 -keyout myServer.key -out myServer.csr

.... where myServer is the name of your server. You should get myServer.key and myServer.csr
files. You can then send the myServer.csr to the chosen certificate authority or use it to generate
a self-signed certificate.

If you send it to a certification authority, you will get in return a certificate to install in your
Wakanda project (see below). You can receive a certificate in different ways (usually by E-
mail or HTML form). The Wakanda Web Server accepts all platform-related text formats for
certificates (Mac OS, PC, Linux, etc.). However, the certificate must be in PKCS format. If
you get a file in a different format (.crt for example), you need to convert it into .pem
format.

If you want to generate a self-signed certificate, you can use openSSL again. For example,
the following command line uses openSSL to generate a certificate ready for Wakanda:
openssl x509 -req -days 15 -in myServer.csr -signkey myServer.key -out cert.pem

Generating a key and a certificate

You can generate a private key and a self-signed certificate in a single call using openSSL. For
example, the following command line generates both valid key.pem and cert.pem files:

openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout key.pem -out cert.pem

Note: Wakanda does not support encrypted private keys.

Installing SSL/TLS files in Wakanda

If you want to use the SSL/TLS protocol in your Wakanda application, the following files must be
installed:

key.pem: This is the file containing the private key.
If necessary, rename your private key file name manually to "key.pem".

cert.pem: This is the file containing the certificate.
It must be named "cert.pem" and be in PKCS format. If you get a file in a different format,
you may need to convert it into .pem format (see above).

Both files must be installed in the Certificates subfolder of your solution folder:

This subfolder is added by default in solutions created with Wakanda starting from version 4.

http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Compatibility Note: If the Certificates folder is missing or empty, Wakanda will look for cert.pem
and key.pem files at the first level of your project folder.

Configuring the Settings

In order for HTTPS connections to be accepted by the Wakanda Web server, you must make sure
that SSL/TLS is activated and configured in the project settings.

Several parameters are accessible in the "Secure Connections" area of the
{projectName}.waSettings file:

Enable secure connections: By default, secure connections are allowed. You can uncheck
this option if you do not want to use HTTPS functionality with your Web server, or if
another Web server allowing secure connections is operating on the same machine.
Port Number: The TCP port dedicated to SSL/TLS data exchange is 443 by default. This
port number can be modified in order, for example, to reinforce the security of the Web
server or to resolve conflicts on the machine. The TCP port 443 is used for standard mode
Web server connections.
Mandatory secure connections: Check this option to force the use of the SSL protocol
for all resources in the application. When checked, only HTTPS connections to the server will
be allowed.

Configuring Hosting

The Wakanda HTTP Server supports multi-domain hosting, that is, a solution can contain several
projects available through different domain names.

By default, Wakanda Server runs your different projects on different TCP ports, but you can easily
configure your projects to support virtual multi-domain hosting.

Default Configuration for Multiple Projects

For each project in a solution, you can specify:

a hostname or IP address
a port number

The basic rule is that for any project in the same solution, at least one of these parameters must
be different so that the server can know to which project each request should be routed.

By default when you create a new project in a new solution, it is assigned to the port 8081 and
Wakanda Server increments this number for each project added in the solution. Since these ports
are different from the default port (80), this means that you need to add the port number to the
hostname in the URL. For example: http://127.0.0.1:8081

The reasons that Wakanda uses these specific port numbers are:

to prevent conflict with another HTTP server on the developer's machine
to make all the projects accessible via different URLs without having to specify (and buy) a

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

domain name
to not rely on an internet connection to reach the server using a domain name

However, in a production context, you would use the TCP port 80 for incoming HTTP connections,
even if your Wakanda Server runs several projects. In this case, you need to configure the virtual
multi-hosting features of the Wakanda server.

Creating Virtual Hosts

This paragraph explains the steps required to configure a single Wakanda Server and the DNS to
support several virtual hosts. Below you will find a screencast that illustrates the whole process.

1. Create a solution containing at least two projects (for example host1 and host2).
2. For each project:

select the same listening TCP port. For example, you can choose the port 8081. For a
production server, you would choose the port 80, which is the default HTTP port.
enter a different hostname, for example host1.myDomain.com and
host2.myDomain.com.
Both parameters are to be defined in the .waSettings file of each project:

3. Configure the DNS accordingly.
In this case, you will configure host1.myDomain.com and host2.myDomain.com to
route requests to the IP address of your server.
Note that domain names can be tested on a developer machine, even in offline mode. You
just need to configure the local "hosts" file (for more information, please refer to
http://support.ecenica.com/domain-names/edit-hosts-file-mac-windows/ or watch this part
of the screencast below).

4. To connect to your projects, enter in a browser:
host1.myDomain.com (if using default port 80) or host1.myDomain.com:8081
(if using specific port) to connect to the first project
host2.myDomain.com (if using default port 80) or host2.myDomain.com:8081
(if using specific port) to connect to the second project

Mime Types Support

All file MIME types handled by Wakanda Server are defined in the MimeType.xml file, stored at
the following location:

http://support.ecenica.com/domain-names/edit-hosts-file-mac-windows/
http://youtu.be/Risgzenpeko?hd=1&t=1m51s

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

{Wakanda Server}/Native Components/HTTPServer.bundle/Contents/Resources/

This file contains all the MIME types recognized by Wakanda Server, along with their associated
extension(s) and the compressibility option. For example:

<mimeType contentType="image/jpeg" extensions="jpeg;jpg;jpe"/>

-> JPEG files, not compressible

<mimeType compressible="true" contentType="text/html"
extensions="html;htm;shtml;shtm" parsable="true"/>

-> HTML files, compressible

Note: You can ignore the "parsable" option.

Configuring Settings Files

Settings files are loaded by Wakanda Server and allows you to define many parameters for your
Web application. Two main settings files are available:

Settings.waSettings located in the Solution folder: This XML file defines the settings for
your solution.
Settings.waSettings located in the Project folder: This XML file defines the
customizable settings for your project.

Note: In Wakanda Studio, the Auto Hide Wakanda Extension option can be set using the Explorer
contextual menu. In this case, extensions are hidden and the settings file only show "Settings".

As settings are XML files, they can be edited with any text or XML editor.

In Wakanda Studio, XML elements can be edited in the Code Editor but most settings are also
available through a graphical interface. For more information, refer to the Solutions and Projects
sections in the Wakanda Studio Reference Guide.

Solution Settings File

The Settings file for your Wakanda solution is an XML file containing several properties that are
used for your entire solution. The Settings file is named Settings.waSettings and is located in
your solution's folder. The XML file appears as shown below with the description of the different
properties in the following sections:

<?xml version="1.0" encoding="UTF-8"?>
<settings>
 <solution>
 <serverStartup stopIfProjectFails="true"/>
 <directory authenticationType="basic"/>
 </solution>
 <database adaptiveCache="false" memoryForOtherApplications="512" memoryForCache="50"
minimumSize="100"
 maximumSize="400" fixedSize="200" keepCacheInMemory="true"
flushDataCacheInterval="15"/>
</settings>

solution

The “solution” root element has the following elements and attributes:

serverStartup

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Code-Editor.200-299404.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Solution-Manager/Solutions.300-473362.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Solution-Manager/Projects.300-473374.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Attribute Default Description

stopIfProjectFails true Defines if server should be stopped when Wakanda fails to open one
of the projects in the solution. Accepted values: “true” or “false”.

directory

Attribute Default Description

authenticationType basic
Defines the authentication mode for your solution. The accepted
values are: “basic,” “digest,” or “custom”. For more information,
please refer to the “Authenticating Users” chapter in the “Data
Security and Access Control” manual.

database

The “database” element has the following attributes:

Attribute Default Description

adaptiveCache false
Activation of the server’s adaptive cache. Accepted values:
“true” or “false”. If it is set to “false,” the fixedSize will be
used.

memoryForOtherApplications 512 Memory to be reserved for other applications and the
system (in MB)

memoryForCache 50 Percentage of the remaining memory allocated to the
cache by default

minimumSize 100 Minimum amount of memory reserved for the cache (in
MB)

maximumSize 400 Maximum amount of memory that can be used by the
cache (in MB)

fixedSize 200 Fixed size of memory to be used by the cache when
adaptiveCache is false (in MB)

keepCacheInMemory true Allows you to force the cache to be kept in the physical
memory of the machine. Accepted values: “true” or “false”

flushDataCacheInterval 15 Specifies the time period between each automatic saving
of the data cache (in seconds)

Project Settings File

Your project's settings file is an XML file that contains the settings for your project whose
elements are defined in the following sections.

Your Wakanda project's settings file is an XML file containing several properties that are used for
your project. The settings file is named Settings.waSettings and is located in your project's
folder. Here is the contents of your project's settings file (in XML):

<?xml version="1.0" encoding="UTF-8"?><settings>
<project publicName="" listen="0" hostName="localhost" responseFormat="json"
administrator="false">
 <database>
 <journal enabled="true" journalFolder="./"/>
 <autoRecovery integrateJournal="true" restoreFromLastBackup="true"/>
 </database>
</project>
<http autoStart="true" port="8081" SSLMandatory="false" SSLPort="443" useCache="false"
pageCacheSize="5242880" cachedObjectMaxSize="524288" acceptKeepAliveConnections="true"
keepAliveMaxRequests="100" keepAliveTimeOut="15" logFormat="ELF" logTokens="BYTES-SENT;C-
DNS;C-IP;CS(COOKIE);CS(HOST);CS(REFERER);CS(USER-AGENT);USER;METHOD;CS-SIP;STATUS;CS-
URI;CS-URI-QUERY;CS-URI-STEM;DATE;TIME;TRANSFERT_TIME;" logPath="Logs/"

http://doc.wakanda.org/Data-Security-and-Access-Control/Authenticating-Users.200-725903.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Data-Security-and-Access-Control.100-725848.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Data-Security-and-Access-Control.100-725848.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

logFileName="HTTPServer.waLog" logMaxSize="10240" allowCompression="true"
compressionMinThreshold="1024" compressionMaxThreshold="10485760"/>
<service name="webApp" modulePath="services/webApp" enabled="true" autoStart="true"/>
<service name="rpc" modulePath="services/rpc" enabled="true" autoStart="true"
proxyPattern="^/rpc-proxy/" publishInClientGlobalNamespace="false"/>
<service name="dataStore" modulePath="services/dataStore" enabled="true"
autoStart="true"/>
<service name="upload" modulePath="services/upload" enabled="true" autoStart="true"/>
<service name="remoteFileExplorer" modulePath="services/remoteFileExplorer"
enabled="false" autoStart="false"/>
<service name="Git HTTP Service" modulePath="services/waf-git/waf-GitService"
enabled="true"/>
<resources location="/walib/" lifeTime="31536000"/>
<javaScript reuseContexts="true"/>
</settings>

project

The “project” element has the following attributes:

Attribute Default Description

publicName Name of the project for “bonjour” service (see Debugging on a Remote
Server).

listen 0
The IP addresses for the corresponding project. The server can listen
to several IP for one project (=application). On localhost this value is
“0”. See Configuring Hosting section.

hostName localhost
Hostname associated to the project of the solution. Hostnames may be
simple names consisting of a single word. See Configuring Hosting
section.

responseFormat json Format of the response from the server, can be “json”, “text”, or
“XML”.

administrator false
Set this value to “true” if you want to use the current project as the
administration project for the current solution. The “Administration”
project provided by Wakanda will be used by default if none of the
projects in the solution have this attribute set to “true".

database

Attributes in the "database" element allow configuring journal and automatic recovery settings.
For more information about the backup features in Wakanda, please refer to the Backup and
Restore section.

journal

Attribute Default Description
enabled true Allows you to enable/disable database journal.
journalFolder ./ Path to the database journal file (or "./" if in the DataFolder).

autoRecovery

Attribute Default Description

integrateJournal Integrate journal when datastore is not up to date with the
journal (true/false).

restoreFromLastBackup Restore damaged datastore with last backup (true/false).

http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html#929281
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-the-Connection-between-the-Studio-and-the-Server.300-583629.en.html#929281
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-Hosting.300-955508.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-Hosting.300-955508.en.html
http://doc.wakanda.org/Datastore/Backup-and-Restore.201-965726.en.html
http://doc.wakanda.org/Datastore/Backup-and-Restore.201-965726.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

http

The “http” element configures the Wakanda HTTP server and has the following attributes:

Attribute Default Description

autoStart true
Enables/disables the HTTP server for the project
at launch. You can manage this property at
runtime using methods from the HttpServer
class. Accepted values: true/false

port 8081

The TCP/IP port to be used when the HTTP
server is started. This value will be incremented
by one for each project added to the solution.
8080 is used for the default administration
project. See Configuring Hosting section.

allowSSL false
Allows you to activate/deactivate the SSL
protocol usage for the current application (“true”
or “false”) (see Configuring secure connections
(SSL/TLS) section)

SSLMandatory false Force the use of the SSL protocol for all
resources in application (“true” or “false”)

SSLPort 443
Sets the TCP/IP port used by the HTTP server for
secured HTTP connections over SSL (HTTPS
protocol).

useCache false Use Wakanda’s cache for pages (see also cache
property)

pageCacheSize 5120 Size for the HTML page cache (in Kb)
cachedObjectMaxSize 524288 Maximum object size in bytes

acceptKeepAliveConnections true Allows you to enable/disable the keep-alive
connections (“true” or “false”)

keepAliveMaxRequests 100 Maximum number of requests by connection

keepAliveTimeOut 15 Maximum timeout (in seconds) for keep-alive
connections

logFormat ELF
Allows you to set the log format. This value can
be “ELF” (Extended log format), “CLF” (Common
log format), and “DLF” (Combined log format).

logTokens
If you select “ELF” as the logFormat, you must
define the log tokens. For more information,
refer to the Web Log section.

logPath Logs/ Path to the HTTP server log file
logFileName HTTPServer.waLog File name for the HTTP server log
logMaxSize 10000 Maximum log file size in bytes.
allowCompression True Enable text compression
compressionMinThreshold 1024 Minimum compression threshold (size in bytes)
compressionMaxThreshold 10485760 Maximum compression threshold (size in bytes)

service

The "service" elements manage the various Wakanda services and has the following attributes:

Attribute Default Description
name Name of the service to configure. The available services are:

"webApp": allows you to server static Web pages
"dataStore": handles access to the REST interface in the

http://doc.wakanda.org/HTTP-Server/HttpServer.201-634485.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-Hosting.300-955508.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-secure-connections-SSLTLS.300-952181.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Configuring-secure-connections-SSLTLS.300-952181.en.html
http://doc.wakanda.org/HTTP-Server/HttpServer/cache.303-634522.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Solution-Manager/Projects.300-473374.en.html#969396

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Wakanda application (internal service)
"rpc": handles access to the JSON-RPC services in the
Wakanda application
"upload": upload services are required for the File Upload
widget
"Git HTTP Service": handles access to git service (Added to
Wakanda 3)
"remoteFileExplorer": allows you to browse files on the server
(Added to Wakanda 4)
You may also have custom services if they are defined as SSJS
modules Using Custom Services

modulePath services/serviceName Path to the SSJS module file that handles the service (within
the Modules folder)

enabled true Allows you to enable/disable the service for the current
project. Either “true” or “false”.

autoStart true Allows you to automatically start the service for the current
project. Either “true” or “false”.

For the "upload" server, the following properties were also added:

Attribute Default Description
maxSize "kb" Maximum file size to upload
maxFiles Maximum number of files to upload
sizeUnity "kb" File size type (kb, mb, or byte)

resources

This setting defines the lifetime of the resources in the client and server cache. Typically, the goal
is to avoid receiving too many requests for resources that rarely change. The “resources” element
has the following attributes:

Attribute Default Description
location /walib/ Location of the resources to store in cache
lifeTime 31536000 Expressed in seconds (the default is equivalent to one year)

javaScript

This setting allows you to reuse JavaScript contexts from one request to another. Everything that
is loaded in a request (include(), functions, etc.) remains available in the context, which is very
practical for RPC requests (cf. Using JSON-RPC Services). The “javaScript” element has the
following attribute:

Attribute Default Description
reuseContexts true Specify if you want contexts to be reused.

Note: When the context is reused, Wakanda verifies if the loaded files were modified. If they
were modified, the context is invalid and therefore not reused and another context is generated.

Wakanda Server Features

Evaluating a JS script using a Command Line

You can execute any JavaScript file with Wakanda Server using a command line. This feature is

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/GUI-Designer-Widgets/File-Upload.300-939929.en.html
http://doc.wakanda.org/Using-Custom-Services/Using-Custom-Services.100-951804.en.html
http://doc.wakanda.org/Global-Application/Application/include.301-937484.en.html
http://doc.wakanda.org/Using-JSON-RPC-Services/Using-JSON-RPC-Services.100-606903.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

available on all platforms (Windows, Mac OS and Linux).

Basically, the running sequence is:

1. You execute a command line that contains the Wakanda Server path and a
JavaScript file path.
Wakanda Server should not be already running.

2. An instance of Wakanda Server is launched and evaluates the script.
Note that the context is outside of any solution or project (application). All APIs that are not
solution-dependent or project-dependent can be used, for example the console object or the
openDataStore() method (see below).

3. The server quits.

The syntax to use is:

Wakanda_server_name JS_File_path

where:

Wakanda_server_name is the full pathname of the server application ("Wakanda Server.exe"
on Windows and "Wakanda Server.app" on Mac OS)
JS_File_path is the full pathname of the JavaScript file to execute. Only one file can be
passed. The path should be expressed in the system syntax. If you do not pass this
parameter or if the JavaScript file is not found, the Wakanda Server is launched and opens
the default solution (see Launching Wakanda Server using a Command Line).

Warning: The shells do not accept spaces or / symbols in command lines. To avoid
interpretation errors, insert parameters between double quotes "" (see examples).

During execution:

The file is evaluated outside of any solution or project (application) context. All APIs that are
not solution-dependent or project-dependent can be used.
The Console object sends messages in the terminal application from where the Wakanda
Server was launched.
Parsing or execution errors are sent to the terminal as well.

After the execution:

A null value is sent.
The Wakanda Server instance quits.

Example

On Windows, we want to print the classic "Hello World" message in the console.

We create a simple "boot.js" file, at the following location: "C:\scripts\boot.js". The file only
contains the following code:

var myText = "Hello World";
console.info(myText);

We open the Command prompt window and execute the following command line:
"c:\wakanda versions\wak2\wakanda server\wakanda server.exe" "c:\scripts\boot.js"

We get the following result:

http://doc.wakanda.org/Global-Application/Application/console.303-633658.en.html
http://doc.wakanda.org/Datastore/Datastore-Creation-Methods/openDataStore.301-592820.en.html
http://doc.wakanda.org/Wakanda-Server-Administration/Managing-Wakanda-Server/Launching-Wakanda-Server-using-a-Command-Line.300-583228.en.html
http://doc.wakanda.org/Console/Console.100-633689.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

Available Wakanda APIs

Here are the main server-side methods and objects available when Wakanda Server evaluates a
.js file through a command line:

console
os
process
BinaryStream()
Buffer()
clearInterval()
clearTimeout()
close()
createDataStore()
dateToIso()
displayNotification()
exitWait()
File()
Folder()
garbageCollect()
generateUUID()
getURLPath()
getURLQuery()
getWalibFolder()
include()
isoToDate()
JSONToXml()
loadImage()
loadText()
open4DBase()
openDataStore()
saveText()
setInterval()
setTimeout()
SharedWorker()
SystemWorker()
TextStream()
wait()
Worker()
XMLHttpRequest()
XmlToJSON()

http://doc.wakanda.org/Global-Application/Application/console.303-633658.en.html
http://doc.wakanda.org/Global-Application/Application/os.303-690737.en.html
http://doc.wakanda.org/Global-Application/Application/process.303-933138.en.html
http://doc.wakanda.org/Global-Application/Application/BinaryStream.301-686617.en.html
http://doc.wakanda.org/Global-Application/Application/Buffer.301-805471.en.html
http://doc.wakanda.org/Global-Application/Application/clearInterval.301-797512.en.html
http://doc.wakanda.org/Global-Application/Application/clearTimeout.301-797418.en.html
http://doc.wakanda.org/Global-Application/Application/close.301-689206.en.html
http://doc.wakanda.org/Global-Application/Application/createDataStore.301-636622.en.html
http://doc.wakanda.org/Global-Application/Application/dateToIso.301-636352.en.html
http://doc.wakanda.org/Global-Application/Application/displayNotification.301-636437.en.html
http://doc.wakanda.org/Global-Application/Application/exitWait.301-802516.en.html
http://doc.wakanda.org/Global-Application/Application/File.301-677814.en.html
http://doc.wakanda.org/Global-Application/Application/Folder.301-677889.en.html
http://doc.wakanda.org/Global-Application/Application/garbageCollect.301-636580.en.html
http://doc.wakanda.org/Global-Application/Application/generateUUID.301-704319.en.html
http://doc.wakanda.org/Global-Application/Application/getURLPath.301-622783.en.html
http://doc.wakanda.org/Global-Application/Application/getURLQuery.301-622896.en.html
http://doc.wakanda.org/Global-Application/Application/getWalibFolder.301-636726.en.html
http://doc.wakanda.org/Global-Application/Application/include.301-937484.en.html
http://doc.wakanda.org/Global-Application/Application/isoToDate.301-636383.en.html
http://doc.wakanda.org/Global-Application/Application/JSONToXml.301-651211.en.html
http://doc.wakanda.org/Global-Application/Application/loadImage.301-651366.en.html
http://doc.wakanda.org/Global-Application/Application/loadText.301-655198.en.html
http://doc.wakanda.org/Global-Application/Application/open4DBase.301-655336.en.html
http://doc.wakanda.org/Global-Application/Application/openDataStore.301-655297.en.html
http://doc.wakanda.org/Global-Application/Application/saveText.301-664836.en.html
http://doc.wakanda.org/Global-Application/Application/setInterval.301-797443.en.html
http://doc.wakanda.org/Global-Application/Application/setTimeout.301-797355.en.html
http://doc.wakanda.org/Global-Application/Application/SharedWorker.301-688965.en.html
http://doc.wakanda.org/Global-Application/Application/SystemWorker.301-689609.en.html
http://doc.wakanda.org/Global-Application/Application/TextStream.301-686651.en.html
http://doc.wakanda.org/Global-Application/Application/wait.301-689176.en.html
http://doc.wakanda.org/Global-Application/Application/Worker.301-688419.en.html
http://doc.wakanda.org/Global-Application/Application/XMLHttpRequest.301-888554.en.html
http://doc.wakanda.org/Global-Application/Application/XmlToJSON.301-655766.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

/cache and /debugInfos URLs

Wakanda Server accepts two specific URLs: /cache and /debugInfos. These URLs can be helpful
for establishing diagnostics about the built-in HTTP server status.

/cache: returns the current contents of the HTTP server cache.
Note that you can handle the server cache in JavaScript through the HttpServer.cache
property and the HttpServerCache class.

/debugInfos: returns internal information about the server and the running solution. This
information is mainly useful for the Wakanda technical team.

/debuginfos and /cache URLs are only available to a user belonging to the "Admin" group (if the
Wakanda admin access control is activated for the solution, refer to the Configuring Admin Access
Control section). If the Wakanda admin access control has not been activated, these URLs are
available to all users.

Syntax and Scope

To call the /cache or /debugInfos URL, you must use the following syntax:

http://{ project address }:{ project port }/urlName[?options]

For example :

http://www.myapp.com:8080/cache?format=xml

Although you have to pass a project identifier, both URLs return global information relative to all
projects opened by the Wakanda Server (including the default admin project, usually published on
port 8080).

options

You can use the options part to set the return format and the indentation of the returned text:

?format=xml or ?format=json
Format of the returned text.
By default (if omitted), format=json

?pretty=yes or ?pretty=no
Sets auto indentation for the returned text.
By default (if omitted), pretty=no

Example of returned cache information in JSON format, indented, and displayed in a browser:

http://doc.wakanda.org/HTTP-Server/HttpServer/cache.303-634522.en.html
http://doc.wakanda.org/HTTP-Server/HttpServerCache.201-944884.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html

http://doc.wakanda.org/ManualPrint/2/274639/print.en.html[12/02/2013 12:07:22]

	Wakanda Server Administration
	Managing Wakanda Server
	Configuring the Connection between the Studio and the Server
	Starting and Stopping Wakanda Server
	Launching Wakanda Server using a Command Line
	Configuring secure connections (SSL/TLS)
	Configuring Hosting
	Mime Types Support

	Configuring Settings Files
	Solution Settings File
	Project Settings File

	Wakanda Server Features
	Evaluating a JS script using a Command Line
	/cache and /debugInfos URLs

