
1 28/06/2012 11:06

Image Class

The Image class of Wakanda manages and works with Image type objects on the server. These objects are:

values of image type attributes in your datastore classes (see the Image Attributes section) or
images that are loaded directly from disk using the loadImage() method.

These objects have methods and properties that you can use to work with them and to get information about their
contents.

Wakanda includes native support of image type objects server-side. Images that you work with through the datastore
classes are stored in their original format without interpretation. You can also retrieve and modify metadata for the
images. You can access this metadata as properties (see meta) and can modify it using the saveMeta() method.

Note: On the client, you can display image type objects or image attributes easily by associating a datasource with the
"Image" widget.

Supported Image Formats

Here is the list of image types supported natively by Wakanda on Windows and Mac OS. You can either pass a Mime type
or an extension in the type parameter.

Format Mime Type(s) Extension(s)

JPEG
image/jpeg, image/jpg, image/pjpeg,
image/jpe_

.jpg, .jif, .jpeg,

.jpe

PNG image/png, image/x-png .png

BMP image/bmp, image/x-bmp .bmp, .dib, .rle

GIF image/gif .gif

TIFF image/tiff, image/x-tiff .tif, .tiff

Windows Metafile
(Windows only)

image/x-emf .emf

PDF (Mac OS only) application/pdf, application/x-pdf .pdf

SVG image/svg+xml .svg

Note: This list contains formats that are managed by default regardless of the operating system. Additional formats
may be available depending on the Wakanda server platform and on the elements installed.

height

Description

The height property returns the height (in pixels) of the Image object.

length

Description

The length property returns the size (expressed in bytes) of the Image type object.

Note: You can use either the size or length property to return the size of the Image.

size

Description

The size property returns the size (expressed in bytes) of the Image type object.

Note: You can use either the size or length property to return the size of the Image.

width

Description

The width property returns the width (in pixels) of the Image object.

2 28/06/2012 11:06

meta

Description

The meta property returns an object made up of one or more sub-objects containing the metadata associated with the
Image object. If the image does not contain any metadata, the property returns an empty object.

Metadata is additional information that is inserted in images. Wakanda works with four standard metadata types: EXIF,
GPS, IPTC, and TIFF. If metadata is found in the image, the meta object contains as many sub-objects as there are
different types of metadata, named EXIF, GPS, IPTC, and TIFF.

Note: For a detailed description of these metadata types, refer to the following documents: http://www.iptc.org
/std/IIM/4.1/specification/IIMV4.1.pdf (IPTC) and http://exif.org/Exif2-2.PDF (TIFF, EXIF and GPS).

Each sub-object consists of a set of properties/values described in the paragraph below.

EXIF

Exchangeable image file format (EXIF) is the image file format specification used by digital cameras. This specification
uses the existing JPEG, TIFF Rev. 6.0, and RIFF WAV file formats with the addition of specific metadata tags. It is not
supported by JPEG 2000, PNG, or GIF.

Here is a list of properties and possible values for the EXIF metadata:

Properties Possible values

ApertureValue Number (APEX value)

BrightnessValue Number (APEX value)

ColorSpace 2 (Adobe RGB), 1 (s RGB), -1 (Uncalibrated)

ComponentsConfiguration 6 (B), 2 (Cb), 3 (Cr), 5 (G), 4 (R), 0 (Unused), 1 (Y)

CompressedBitsPerPixel Number

Contrast 2 (High), 1 (Low), 0 (Normal)

CustomRendered 0 (Normal), 1 (Custom)

DateTimeDigitized XML Datetime

DateTimeOriginal XML Datetime

DigitalZoomRatio Number

ExifVersion String (4 digits)

ExposureBiasValue Number

ExposureIndex Number

ExposureModus 0 (Auto), 2 (Auto Bracket), 1 (Manual)

ExposureProgram
1 (Manual), 5 (Action), 3 (Aperture Priority AE), 5
(Creative), 8 (Landscape), 7 (Exposure Portrait), 2
(Program AE), 4 (Shutter Speed Priority AE)

ExposureTime Number

FNumber Number

FileSource
3 (Digital Camera), 1 (Film Scanner), 2 (Reflection Print
Scanner)

Flash
3 (Auto Mode), 1 (Compulsory Flash Firing), 2 (Compulsory
Flash Suppression), 0 (Unknown), 3 (Detected), 0 (No
Detection Function), 2 (Not Detected), 1 (Reserved)

FlashEnergy Number

Flash/Fired Boolean

Flash/FunctionPresent Boolean

Flash/Mode
3 (Auto Mode), 1 (Compulsory Flash Firing), 2 (Compulsory
Flash Suppression), 0 (Unknown)

FlashPixVersion String (4 values)

Flash/RedEyeReduction Boolean

3 28/06/2012 11:06

Flash/ReturnLight
3 (Detected), 0 (No Detection Function), 2 (Not Detected),
1 (Reserved)

FocalLenIn35mmFilm Number

FocalLength Number

FocalPlaneResolutionUnit Number

FocalPlaneXResolution Number

FocalPlaneYResolution Number

GainControl
4 (High Gain Down), 2 (High Gain Up), 3 (Low Gain Down),
1 (Low Gain Up), 0 (None)

Gamma Number

ImageUniqueID Text

ISOSpeedRatings Number

LightSource

0 (Unknown), 10 (Cloudy), 14 (Cool White Fluorescent), 23
(D50), 20 (D55), 21 (D65), 22 (D75), 1 (Daylight), 12
(Daylight Fluorescent), 13 (Day White Fluorescent), 9 (Fine
Weather), 4 (Flash), 2 (Light Fluorescent), 24 (ISOStudio
Tungsten), 255 (Other), 11 (Shade), 17 (Standard Light A),
18 (Standard Light B), 19 (Standard Light C), 3 (Tungsten),
15 (White Fluorescent)

MakerNote Text

MaxApertureValue Number

MeteringMode
255 (Other), 1 (Average), 2 (Center Weighted Average), 5
(Multi Segment), 4 (Multi Spot), 6 (Partial), 3 (Spot)

PixelXDimension Number

PixelYDimension Number

RelatedSoundFile Text

Saturation EXIF High, EXIF Low, EXIF Normal

SceneCaptureType
EXIF Scene Landscape, EXIF Night, EXIF Scene Portrait,
EXIF Standard

SceneType Longint

SensingMethod
EXIF Color Sequential Area, EXIF Color Sequential Linear,
EXIF Not Defined, EXIF One Chip Color Area, EXIF Three
Chip Color Area, EXIF Trilinear, EXIF Two Chip Color Area

Sharpness 2 (High), 1 (Low), 0 (Normal)

ShutterSpeedValue Number

SpectralSensitivity Text

SubjectArea String (2, 3 or 4 values)

SubjectDistRange 0 (Unknown), 2 (Close), 3 (Distant), 1 (Macro)

SubjectDistance Number

SubjectLocation String (2 values)

UserComment String

WhiteBalance 0 (Auto), 1 (Manual)

GPS

Here is a list of properties and possible values for the GPS (geolocation) metadata:

Properties Possible values

4 28/06/2012 11:06

Altitude 0 (Above Sea Level), 1 (Below Sea Level)

AltitudeRef 0 (Above Sea Level), 1 (Below Sea Level)

AreaInformation Text

DateTime XML Datetime

DestBearing Text (1 character)

DestBearingRef Text (1 character)

DestDistance Text (1 character)

DestDistanceRef Text (1 character)

DestLatitude Text

DestLatitude/Deg Real

DestLatitude/Dir Text (1 character)

DestLatitude/Min Number

DestLatitude/Sec Number

DestLongitude Text

DestLongitude/Deg Number

DestLongitude/Dir Text (1 character)

DestLongitude/Min Number

DestLongitude/Sec Number

Differential 1 (Correction Applied), 0 (Correction Not Applied)

DOP Number

ImgDirection "M" (Magnetic north), "T" (True north)

ImgDirectionRef "M" (Magnetic north), "T" (True north)

Latitude "N" (North), "S" (South)

Latitude/Deg Number

Latitude/Dir "N" (North), "S" (South)

Latitude/Min Number

Latitude/Sec Number

Longitude "W" (West), "E" (East)

Longitude/Deg Number

Longitude/Dir "W" (West), "E" (East)

Longitude/Min Number

Longitude/Sec Number

MapDate Texte

MeasureMode 2 (2D), 3 (3D)

ProcessingMethod Text

Satellites Text

Speed "K" (km h), "M" (miles h), "K" (knots h)

SpeedRef "K" (km h), "M" (miles h), "K" (knots h)

Status "A" (Measurement in progress), "V" (Measurement Interoperability)

Track Number (0.00..359.99)

TrackRef String (1 character)

VersionID String (4 characters)

IPTC

5 28/06/2012 11:06

IPTC metadata attributes are widely used and supported by many image creation and manipulation programs. Almost all
the IPTC metadata attributes are supported by the Exchangeable image file format (EXIF), the image file format
specification used by digital cameras. IPTC metadata can be embedded into JPEG/Exif or TIFF formatted image files.
Other file formats such as JPEG2000, Portable Network Graphics, and GIF do not support IPTC metadata.

Here is a list of properties and possible values for the IPTC metadata:

Properties Possible values

IBylin Text

BylineTitle Text

CaptionAbstract Text

Category Text

City Text

Contact Text

ContentLocationCode Text

ContentLocationName Text

CopyrightNotice Text

CountryPrimaryLocationCode Text

CountryPrimaryLocationName Text

Credit Text

DateTimeCreated XML Datetime

DigitalCreationDateTime XML Datetime

EditStatus Text

ExpirationDateTime XML Datetime

FixtureIdentifier Text

Headline Text

ImageOrientation Text

ImageType Text

Keywords Text

LanguageIdentifier Text

ObjectAttributeReference Text

ObjectCycle Text

ObjectName Text

OriginalTransmissionReference Text

OriginatingProgram Text

ProgramVersion Text

ProvinceState Text

ReleaseDateTime XML Datetime

Scene

11900 (Action), 11200 (Aerial View), 11800 (Close Up),
10700 (Couple), 11900 (Exterior View), 10300 (Full
Length), 11000 (General View), 10900 (Group), 10200
(Half Length), 10100 (Headshot), 11700 (Interior
View), 12400 (Movie Scene), 11400 (Night Scene),
12300 (Off Beat), 111000 (Panoramic View), 12000
(Performing), 12100 (Posing), 10400 (Profile), 10500
(Rear View), 11500 (Satellite), 10600 (Single), 12200
(Symbolic), 10800 (Two), 11300 (Under Water)

Source Text

SpecialInstructions Text

6 28/06/2012 11:06

StarRating Number

SubLocation Text

SubjectReference Number

SupplementalCategory String

Urgency Number

WriterEditor String

TIFF

Tagged Image File Format (TIFF) is a file format for storing images, popular among those using Apple Macintosh, such as
graphic artists, the publishing industry as well as amateur and professional photographers. Developers can request a
block of "private tags" to include their own proprietary information inside a TIFF file without causing problems for file
interchange. TIFF readers are required to ignore tags they do not recognize, and a developer's private tags are
guaranteed not to clash with anyone else's tags or with the standard set of tags defined in the specification.

Here is a list of properties and possible values for TIFF metadata:

Properties Possible values

Artist Text

Compression

8 (Adobe Deflate), 32771 (CCIRLEW), 2 (CCITT1D), 32947
(DCS), 32946 (Deflate), 32769 (Epson ERF), 32898 (IT8BL),
32895 (IT8CTPAD), 32896 (IT8LW), 32897 (IT8MP), 34661
(JBIG), 9 (JBIGB&W), 10 (JBIGColor), 7 (JPEG), 34712
(JPEG2000), 6 (JPEGThumbs Only), 262 (Kodak262), 65000
(Kodak DCR), 32867 (Kodak KDC), 5 (LZW), 34718
(MDIBinary Level Codec), 34719 (MDIProgressive Transform
Codec), 34720 (MDIVector), 32766 (Next), 34713 (Nikon
NEF), 32773 (Pack Bits), 65535 (Pentax PEF), 32908 (Pixar
Film), 32909 (Pixar Log), 34676 (SGILog), 34677
(SGILog24), 32767 (Sony ARW), 3 (T4Group3Fax), 4
(T6Group4Fax), 32809 (Thunderscan), 1 (Uncompressed)

Copyright Text

DateTime XML Datetime

DocumentName Text

HostComputer Text

ImageDescription Text

Make Text

Model Text

Orientation

1 (Horizontal), 2 (Mirror Horizontal), 5 (Mirror Horizontal
And Rotate270CW), 7 (Mirror Horizontal And Rotate90CW),
4 (Mirror Vertical), 3 (Rotate180), 8 (Rotate270CW), 6
(Rotate90CW)

PhotometricInterpretation

1 (Black Is Zero), 8 (CIELab), 5 (CMYK), 32803 (Color Filter
Array), 9 (ICCLab), 10 (ITULab), 34892 (Linear Raw), 32844
(Pixar Log L), 32845 (Pixar Log Luv), 2 (RGB), 3
(RGBPalette), 4 (Transparency Mask), 0 (White Is Zero), 6
(YCb Cr)

ResolutionUnit 3 (CM), 2 (Inches), 4 (MM), 1 (None), 5 (UM)

Software Text

XResolution Number

YResolution Number

7 28/06/2012 11:06

Example

Below is an example of loading an image including TIFF and EXIF metadata:

var img = loadImage("c:/temp/Tulips.jpg");
var imgMeta = img.meta;
 // imgMeta contains (for example):
 // { TIFF: { PhotometricInterpretation: "2", Orientation: "1", XResolution: "96/1", 4
 // EXIF: { ExifVersion: "0221", DateTimeOriginal: "0000-00-00T00:00:00Z", 5 more} }

save()

void save(String | File file [, String type])

Parameter Type Description

file String, File Path for the file to create or File object
type String Format of image to save

Description

The save() method stores the Image object in a file.

You can store the image directly in a file on disk or in a File object:

If you pass an absolute path to file, the image is stored in a file on disk at the location specified. You can also
pass the extension of the file to create.
If you pass a reference to a File object in file, the image is stored in a File object that you can then (if desired)
store on disk (for more information about File objects, refer to the documentation for Files and Folders).

In the type parameter, pass a string indicating the format of the image to save. You can pass either a Mime type (e.g.,
"image/jpg"), or an extension (e.g., ".jpg"). In most cases, it is recommended that you pass a Mime type. The list of
image formats supported by Wakanda Server is located in the Image Class section.

Note: By default, if you pass a path and omit the type parameter, Wakanda tries to determine the image format based
on the extension of the file parameter.

saveMeta()

void saveMeta(Object meta)

Parameter Type Description

meta Object Object containing the metadata to be modified

Description

The saveMeta() method modifies metadata found in the Image object. Metadata is additional information that is
inserted in an image. Wakanda works with four types of standard metadata: EXIF, GPS, IPTC, and TIFF. You can find out
the current metadata for an image by using the meta property.

In meta, pass an object containing at least one of the EXIF, GPS, IPTC, or TIFF members including property/value pairs.
Only the properties contained in the object are updated, any other metadata is not changed. For a complete list of
properties and values that can be modified for each type of metadata, refer to the description of the meta property.

Note: This method cannot be used with Image objects saved in datastore attributes. For more information on how to
edit and save metadata in image attributes, please refer to the Editing an Image Attribute Metadata paragraph.

Example

 We want to add the keywords "vacation" and "snow" in the IPTC metadata for an image stored on disk:

var img = loadImage("c:/test/img00210.jpg"); // load the image
var newMeta = { IPTC:{Keywords: ["vacation", "snow"]}} ; // create the metadata to add
img.saveMeta (newMeta); // update metadata
img.save ("c:/test/img00210.jpg") ; // save the information in the file

setPath()

void setPath(File | String file)

Parameter Type Description

8 28/06/2012 11:06

file File, String Image file object or path

Description

The setPath() method allows you to associate a file path to an Image object.

This feature is designed for image attributes. When you associate a file to an Image and then assign the Image to an
image attribute, only the referenced file is stored in the attribute, just like a direct assignment by reference. When you
save the entity, the referenced file is also generated from the Image and saved on disk (if a file was already existing at
the location, it is replaced). The referenced file is used each time you need to access the image attribute.

The setPath() method is useful for example when you parse a picture folder and want to reference each picture it
contains without having to process them all.

For more information about the different ways to assign an image to an attribute, please refer to the see Assigning an
Image to an Attribute section.

Example

We want to create a thumbnail from a loaded image, and store it as a reference in an attribute:

var pictFile = File ("C:/Wakanda/facebook/johndoe.jpg"); // get a file reference to a pic
var myPict = loadImage (pictFile); // load the image
var thumb = myPict.thumbnail(300,200,4); // create a thumbnail from the image
var thumbFile = File(pictFile.getParent(), pictFile.nameNoExt+"_thumb."+pictFile.extensio
thumb.setPath(thumbFile); // set the file path to the thumbnail image
var p = new ds.Person(//create a new Person entity
 {
 name: "Doe",
 firstName: "John",
 photo: thumb //assign the image reference to the attribute
 });
p.save(); // save the person
// the thumbnail file is also automatically saved on disk

thumbnail()

Image thumbnail([Number width [, Number height[, Number mode]]])

Parameter Type Description

width Number Thumbnail width in pixels, default value = 48
height Number Thumbnail height in pixels, default value = 48
mode Number Thumbnail creation mode, default value = 6 (scaled to fit proportional and centered)

Returns Image Resulting thumbnail

Description

The thumbnail() method returns a thumbnail of the source image. Thumbnails are useful when previewing images.

The optional width and height parameters allow you to define the required thumbnail size in pixels. If you omit these
parameters, the default thumbnail size is 48 by 48 pixels.

The optional mode parameter sets the thumbnail creation mode, i.e., the reduction mode. Three modes are available:

2 Scaled to fit (the proportions are not maintained)

5
Scaled to fit proportionally (proportions are preserved, the image is aligned to the
top left)

6 Scaled to fit proportionally and centered

If you do not enter any parameter, the “Scaled to fit proportionaly and centered” mode (6) is applied by default. Below
is an illustration of the various modes:

Source picture

9 28/06/2012 11:06

Resulting thumbnails (48x48)

Scaled to fit = 2

Scaled to fit proportionally = 5

Scaled to fit proportionally centered = 6 (default mode)

Example

Creating a 50 x 50 pixel thumbnail based on an image stored in the application folder:

var newThumb, basePath;
basePath = application.getFolder().path; // building image path
newThumb = loadImage(basePath + "img1.jpg"); // loading image
newThumb = newThumb.thumbnail(50, 50); // creating thumbnail
newThumb.save(basePath + "img1_thumb.jpg"); // saving image

10 28/06/2012 11:06

Image Constructor

loadImage()

Image loadImage(File | String file)

Parameter Type Description

file File, String Image file object or path

Returns Image Image object

Description

The loadImage() method loads the image stored in a file referenced by the file parameter and returns an image object.
You can pass either a File object or a string containing a standard file path in the file parameter (use the "/" as folder
separator).

Note: In the current version of Wakanda, you have to pass an absolute path in the file parameter.

If the file does not contain a valid image or if the file reference is invalid, the method returns null.

For more information about Wakanda image object manipulation, refer to the Images class description.

Example

This example loads the image in a JPG file stored on the server and stores it in a new entity in the Pict class (in the
photo attribute).

Here is the (simplified) datastore class:

var mypict = loadImage ("C:/Wakanda/Solutions/mysolution/Tulips.jpg"); // load the image
var p = new Pict(); // create a new entity in the Pict datastore class
p.name = "Flower"; // name the image
p.photo = mypict; // put the image in the photo attribute
p.save(); // save the entity

11 28/06/2012 11:06

	Images API
	Image Class
	height
	length
	size
	width
	meta
	save()
	saveMeta()
	setPath()
	thumbnail()

	Image Constructor
	loadImage()

