
How Do I

About these examples

In the Quick Start, you discovered the basic principles of Wakanda programming: you built a typical
employees/companies application by creating the datastore model with its datastore classes on the server,
imported data using server‐side JavaScript, displayed the data in a browser, and wrote a bit of JavaScript client‐
side code to dynamically bind an employee to the company he/she works for.
After going through the Quick Start guide, you might want to jump into Wakanda and start creating a real‐life
application. In the How‐Do‐I series, we will cover the following topics that you can immediately use:

Client‐side: how to bind a local JavaScript variable to a widget, how to create a new entity and save it on
the server, how to use jQuery with a Wakanda Application Framework (WAF) widget, …
The “Free Your Mind” chapter shows you the power of datastore classes. You will learn how to extend a
datastore class and how to create an N<‐>N relationship with multiple datastore classes.

We will not build a full application from start to finish; however, we will highlight certain aspects that will help
you learn more about Wakanda. The different examples are not related to each other.
In these examples, we assume that you have already read the Quick Start guide and know how to:

Install and launch Wakanda,
Create a datastore class with its attributes using the Datastore Model Designer,
Create a Page in the GUI Designer and add widgets and bind datasources to them, and
Add server‐side and client‐side JavaScript code.

Some abbreviations used:

SSJS Server‐Side JavaScript
WAF Wakanda Application Framework

Testing out the examples

A demo Wakanda solution (containing a project) is provided with each chapter.
To run a demo:

1. Launch Wakanda Studio (if you have not already done so).
2. Open the solution that comes with the "How Do I" example specified for the chapter.

For each example, we have created the files for you to see how they work immediately. We invite you to create
your own Pages to redo the example. Our projects also contain sample data so that you can test them quickly.

http://doc.wakanda.org/Quick-Start/Quick-Start.100-695763.en.html
http://doc.wakanda.org/Quick-Start/Quick-Start.100-695763.en.html

http://doc.wakanda.org/Datasource/Local-Datasources/sync.301-624417.en.html
http://doc.wakanda.org/Datasource/Introduction/What-is-a-Datasource.300-607007.en.html
http://download.wakanda.org/Documentation/current/HowDoI/DatasourceBinding.zip

Once in the GUI Designer, add the following widgets:

1. Add a Grid to the Page and then drag the Company datastore class and drop it on to it.
The company datasource is automatically created for you and the Datasources tab is selected in the bottom
left section of the GUI Designer.

2. Drag and drop a Text widget on the Page and then drag and drop the revenues attribute from the company
datasource on it.
If you don't see the revenues attribute right away, click on the arrow to the left to view the attributes in
the company datasource.

3. Type "Revenues" for the Text widget's Label.
4. Add a Slider widget to your Page and then drag and drop the revenues attribute from the company

datasource on it.

5. Type "500000" in the Maximum Value field:

Creating a Company Form

Now, we want to create a container with the name and revenues attribute from the company datasource:

1. Hold down the Ctrl key (Windows) or Command key (Mac) and click on the name and revenues attributes.
2. Drag and drop them to an empty space on the Page.

The GUI Designer displays a dialog to help generate the widgets:

3. Make sure that the “Form” option is selected in the Auto Generated Widgets dialog.
4. Keep Text Input as the widget type for both attributes.
5. In the Label column, change "name" to "Name" and "revenues" to "Revenues".
6. Click the Create button.

The two Text Input widgets are automatically created inside of a Container widget.
7. Increase the size of the Container and add three Image Button widgets to it. Bind them to the company

datasource and give them the appropriate automatic actions: previous, next and save.
8. Format the Previous, Next, and Save buttons as we did in the Adding Navigation Buttons section of the

Quick Start.

You can move the widgets around the Page and change their styles as you wish. Our final Page is shown below. We
have aligned the data in the Grid's “Revenues” column to the right and set its format to “$###,##0.00”. All widgets
displaying company.revenues have the same format.

http://doc.wakanda.org/Quick-Start/Enhancing-the-Employees-Page.200-695840.en.html#698542
http://doc.wakanda.org/Quick-Start/Quick-Start.100-695763.en.html

At this point, we have the following in our Page without having written any JavaScript code:

One single datasource, company, whose origin is the Company datastore class.
Four widgets bound to the revenues attribute of the company datasource:

the “revenues” column of the Grid,
the “revenues” Text Input widget in the Container,
the “revenues” Text widget, and
the “revenues” Slider.

Running the example

To test out the Page:

1. Click the Run File button in the toolbar.
Wakanda Studio saves the Page, launches the server (if it is not already running) and displays the Page in
your default browser.

2. Click different rows in the Grid.
The data in the other "revenues" widgets is updated automatically.

3. Click on the navigation buttons in the Container.
The data for each entity is displayed in all the widgets.

4. Move the Slider.
The value in the Revenues attribute is updated in the Grid, Text, and Text Input widgets.

In all cases, you can see that any widget bound to company.revenues is automatically and instantaneously
updated, which is the power of binding widgets to the same datasource. More precisely, each widget has
subscribed to the datasource so when the data managed by the datasource is modified, all the other widgets that
subscribe to the same datasource update their content.

Using a Text Input widget to filter data in a Grid

This example will show you how to filter the contents in a Grid widget by text that is entered in a Text Input
widget.
The full example with its data is provided in the “QueryFromHTMLPage” solution. It contains a project with the
same name that has one datastore class, “Company” and the datastore already contains a few companies.
In this example, we will show you how to use a Text Input widget in which a user enters text to filter data in a
Grid. We will be showing you two different ways to do this:

By using a button to query the companies once the user has finished entering data in the Text Input widget
or
By doing a live query while the user enters data in the Text Input widget.

Before beginning, launch Wakanda and open the “QueryFromHTMLPage” solution.

http://download.wakanda.org/Documentation/current/HowDoI/QueryFromHTMLPage.zip

Using a button to query the datasource

In this example, you will learn how to bind a JavaScript string variable to a Text Input widget, and how to use this
variable in the code.
We want to create the following interface:

A Grid displaying a list of all the companies,
A Text Input in which you type a company name to search for, and
A Button to run the query.

To create this interface:

1. Select the “QueryFromHTMLPage” project or create a new project.
2. Create a new Page.
3. Name it “companies‐query‐button”.
4. Once in the GUI Designer, drag and drop three widgets in the Workspace: a Grid, a Text Input and a Button.
5. Select the Company datastore class and drop it on the Grid.

The company datasource is automatically created and is displayed in the Datasources tab in the bottom left
section of the GUI Designer.

6. Remove the ID column from the Grid.
7. Change the styles of the Grid and the other widgets as you wish.
8. Change the positions of the widgets to create a coherent interface. In our example, we set the label of the

Text Input to the top of the widget (this is done in the Styles tab when the widget is selected).
9. Change the title of the Button to "Search".

10. Change the label of the Text Input widget to “Company name” by either double‐clicking on the label or
changing its Label property in the Properties tab.

Binding a JavaScript variable to the Text Input widget

To bind a JavaScript string variable to the Text Input widget:

1. Select the Text Input widget.
2. In the Source field of the Properties tab, type queryStr, which is the JavaScript variable we're going to

create.

Wakanda creates a datasource of type Variable with the same name:

http://doc.wakanda.org/How-Do-I/Client-Side/Using-a-Text-Input-widget-to-filter-data-in-a-Grid.300-690922.en.html#691427

http://doc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html
http://doc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html

http://doc.wakanda.org/Datasource/Local-Datasources/sync.301-624417.en.html

To create this Page:

1. Click on the New Page button in the toolbar to create a new page.
Make sure the destination folder is your project's "WebFolder".

2. Name the Page "companies‐query‐keyup”.
3. Add a Grid and a Text Input widget to the Page.
4. Drag the Company datastore class and drop it on top of the Grid.

The company datasource is automatically created.
5. Format the Grid as you did in the previous example.
6. Select the Text Input widget.
7. Insert "Company name" as the label of the Text Input widget.
8. Modify its ID to “idQueryString.”

9. Switch to the Events tab and click the On key up event:

The GUI Designer creates a new JavaScript file (located in the “scripts” folder for your Page) attached to
your Page. It also inserts the path to this JavaScript file in the Scripts section of the Page's Properties tab.
This JavaScript file is opened in the Code Editor after inserting the required declarations:

To retrieve the value the user types in the Text Input widget, we use the getValue() function in the Widgets v1
Instance API API:

http://doc.wakanda.org/Widgets-v1-Instance-API/Text-Input/getValue.301-974675.en.html
http://doc.wakanda.org/Widgets-v1-Instance-API/Widgets-v1-Instance-API.100-744727.en.html

http://doc.wakanda.org/Datastore-Model-Designer/Datastore-Model-Designer.100-1051416.en.html
http://doc.wakanda.org/Dataprovider/Dataprovider.100-606954.en.html

http://download.wakanda.org/Documentation/current/HowDoI/TwoGridsSameClass.zip

2. The GUI Designer displays a dialog to select which datastore class to use among all the datastore classes in
your model. In this example, we have only one datastore class, “Company,” so we select it:

3. Select Duplicate datasource from the company datastore class datasource's contextual menu.

A new datasource, bound to this class, is then added in the Datasources tab. As we already have a
datasource named company, the GUI Designer uses the same name (which is the name of our datastore
class) and adds a “1” at the end to differentiate it:

To give our datasources more significant names, follow the steps below:

1. Select the company datasource. In the Property panel on the right, change the ID to "lowRevenues":

2. Select the company1 datasource and change its ID to "highRevenues".
Here are our two datasources:

3. Add a Grid to your Page and drag and drop the "lowRevenues" datasource to it.

4. Add another Grid to your Page and drag and drop the "highRevenues" datasource to it.
5. Remove the ID columns from both Grids.
6. Add a label for each one: "Low Revenues" to the one using the "lowRevenues" datasource and "High

Revenues" to the one using the "highRevenues" datasource. The two Grids should now appear as shown
below:

Testing the example

After saving changes to the JavaScript file, switch to the Page, and run the file to test if everything is working
accurately.

1. Type 200000 in the Limit Text Input widget.
The two Grids display the results:

2. Set the limit to 400000.
Notice that the “Low Revenues” Grid contains more rows and the “High Revenues” one displays less rows:

Free Your Mind

In these examples, we will be covering some features that are at the heart of Wakanda. As soon as you enter what
could be called the Wakanda Programming Style, you will save a lot of development time as well as maintenance
time.

Extending a Datastore Class

In this example, we will learn how to extend a datastore class and use the derived class at runtime.
First, launch Wakanda Studio and open the “ExtendAClass” solutions. You can either open the “ExtendAClass”
project to go through this tutorial or open the “ExtendAClass‐final” folder containing the "ExtendAClass" project
to see the final outcome. Both solutions contain all the data necessary to test your web application.
In this project, we have customers and the issues they have with a set of products. We want to display both the
closed and open issues on a Page and therefore we want to create the following interface:

A list of customers,
When a customer is selected, we want to fill two Grids:

One with the customer’s open issues and
One with his/her closed issues.

In the project’s model, we have two datastore classes: Customer and Issue. There are relation attributes (N‐>1
and 1‐>N) between them. In this screen shot, the mouse is over the relation, and the Datastore Model Designer
displays information about the relation (“Belongs to” and “Has many”):

The Issue class has also one line of JavaScript for its init event to set the isClosed attribute to False by default:

For what we want to achieve — two Grids, each displaying a different list of issues — we could start coding
something like this:

http://download.wakanda.org/Documentation/current/HowDoI/ExtendAClassSolutions.zip

http://doc.wakanda.org/Datastore-Model-Designer/Datastore-Model-Designer.100-1051416.en.html
http://doc.wakanda.org/Wakanda-Server-Side-Concepts/Wakanda-Server-Side-Concepts.100-715066.en.html

Now, all we need to do is to create one 1‐>N (“Has many”) relation attribute from Customer to ClosedIssue and
one from Customer to OpenIssue:

1. Select the Customer class.
2. Click the icon to add a new attribute to the class:

3. Name it closedIssues and hit Return or Tab.
4. In the type column, select ClosedIssueCollection, which is the collection name based on the ClosedIssue

class you just created. Most likely, the Datastore Model Designer named it for you.

The Datastore Model Designer asks you to select the N‐>1 navigation attribute in the N table.
5. Select customer:

You can follow the same steps for the open issues:

1. Select the Customer class.
2. Click the icon.
3. Name the attribute openIssues.
4. Select OpenIssueCollection as the type of the attribute.
5. Select customer as the N‐>1 attribute to use.

Here is our application’s model with all the relations visible:

The classes we created will be exactly how we will use the objects at runtime. Now, we can build a new Page:

1. Click on the New Page button in Wakanda Studio’s toolbar.
2. Name the new Page: “customer‐issues”:

The new Page is created and opened in a new tab in the GUI Designer.
3. Drag and drop a Grid to an empty space on the Page.
4. Bind it to the Customer class (which consequently creates the customer datasource).
5. Modify the Grid by removing the ID attribute, changing the labels, etc.

Now, we want to create a Grid to display the list of closed issues for the selected customer:

http://download.wakanda.org/Documentation/current/HowDoI/NNRelation.zip

These datastore classes are basic and contain very few attributes so we can keep the example as simple as
possible.

Create the Relation

To create the N<‐>N relation, we need to add a utility class that we’ll name “Attendee.” Each entity in this class
will store information about the “person who attended a conference.”

Then, we add the first N‐>1 (or “belongs to”) relation attribute in Attendee, named person. Click the “+” button
at the right of the “Attributes” subtitle. Name the attribute “person”, and select “Person” as the attribute type:

As soon as you select “Person,” the corresponding 1‐>N attribute in the Person class is automatically created:

Now, create a conference relation attribute in Attendee:

http://doc.wakanda.org/Datastore/Entity-Collection/toArray.301-602696.en.html

3. As the type of attribute, select the allAttendees relation attribute.
4. Type a period after allAttendees. Wakanda detects allAttendees as a relation attribute of type “has many

Attendees”. So, it opens the auto complete menu, filled with the available attributes of the Attendee
class. Select the conference attribute:

5. Now you have created a direct access from Person to Conference:

6. Save the Model.
7. Reload the model to the server by clicking on the Reload Model button in the Datastore Model Designer or

Reload Models button in the main toolbar.

To display the relations in the Datastore Model Designer, select the appropriate menu item…

6. Take some time to format the page, change colors, font, etc. so it appears as you’d like in the browser.

Now, you can run the file and test your work:

5. Save the datastore model.
6. Reload the model by clicking on the Reload Model button (or the Reload Models button in the main

toolbar).

Here is how our three datastore classes look when the “See all” option is selected in the “Relations” toolbar
button:

When the mouse is over a relation, it is highlighted and a message appears describing the relation attribute:

Now, we create the HTML page that displays a grid of conferences and, when a conference is selected, another

grid displays all the attendees:

1. Click on the New Page button.
2. Name the page “confAndPeople”.
3. Create a Grid and bind it to Conference (which creates the conference datasource). Just keep the title

attribute visible since we don’t need to see the ID.
4. Create another Grid and bind it to the allpeople attribute in the conference datasource:

5. Save and run the file. When a conference is selected in the grid, all the people who attended that
conference are listed in the other Grid:

4. Drag and drop a third Grid and move it near the conferences grid.
5. Expand the allConferences datasource and bind the grid to the allPeople attribute:

6. Format the Grids as you wish.
7. Save and run the file to test the result in your browser:

