
Introduction to Wakanda Client-Side Development

This manual introduces you to client-side development for a Wakanda project. This material
assumes that you have already read the Wakanda Server-Side Concepts manual and have
familiarized yourself with the Wakanda’s concept of datastore classes along with its unique and
powerful capabilities as a database engine. You should be comfortable with the terminology
introduced in that section and have already explored creating datastore classes in a model. We
also assume that you have had some basic exposure to Wakanda Studio and have read the GUI
Designer chapter in the Wakanda Studio Reference Guide.

Prerequisites

Here are the prerequisites for the developer who wants to begin working with Wakanda:

JavaScript development background
jQuery familiarity (preloaded with Wakanda)
No advanced database knowledge necessary

1 of 20

About Wakanda

Wakanda is an open-source platform for creating “Web Applications” that have many of the
same characteristics as desktop applications and yet run in the context of a web browser. It is
an all-encompassing development and deployment solution that marries a powerful NoSQL
database engine and web server with a widget-centric JavaScript framework on the client-side.
Using only standards-based and open-source tools, Wakanda leverages the advancements in web
browsers to empower developers to create web applications whose functionality is
indistinguishable from a desktop application.

Wakanda is more than just a framework. It includes a web server with an integrated NoSQL
database engine. The Wakanda Studio provides robust graphical tools for defining datastore
classes, attributes, and methods at the heart of an application. The development environment
is entirely based on HTML, CSS, and JavaScript, making it easily accessible to the majority of
web developers.

As you work with and build solutions in Wakanda, you will find that they most closely resemble
the Single-Page Application (SPA) method of development. While you are certainly able to
transition the user from one page to the next, each page can be so richly interactive that the
need to do so is greatly minimized. Once a page is delivered to a client, there is little need for
postbacks to the server. Controls on your page will be refreshed as needed via AJAX calls based
on user interaction. Using a robust set of widgets, you can easily build pages with complex
interactions and very little code.

Wakanda’s backend is made up of a web server, a database server, and a REST/JSON server that
uses JavaScript as its programming language. In Wakanda, all the elements are designed to work
in harmony for ease of development and deployment.

A Bit of Background

The “Web Application” has been a dream of developers for a number of years. However,
limitations in the HTML specification and poor consistency in browser implementations have
made it difficult to develop web-based solutions whose interface and behavior could
approximate a desktop application.
A solution chosen by many developers to sidestep the variances between browsers was the
“Rich Internet Application (RIA).” These solutions were developed in third-party (often
commercial) applications like Flash or Silverlight in order to more closely approximate the feel
of a desktop application in a web context. These solutions typically require the end-user to
have a particular plug-in installed in order to “run” the application. As more and more web
usage transitions to mobile devices (phones, tablets, and notebooks), these types of solutions
are often not supported or require more bandwidth and/or horsepower than a solution built
entirely on web standards.

With the advent of the HTML5 specification, we are finally seeing browser vendors take a keen
interest in implementing features specific to the needs of both developers and designers. The
browser makers across the board are making an unprecedented effort to assure their products
render web content according to the specification.

When we talk about HTML5, we’re including the advancements in CSS3 and JavaScript. The
whole environment represents a set of standards all browser vendors are targeting in their most
current releases. While there will always be small variances in browser implementations, the
JavaScript tools today provide an easy way to test for compatibility on a per feature basis.

2 of 20

The Essential Parts of Wakanda

The Wakanda development environment is composed of two applications: Wakanda Server and
Wakanda Studio. Wakanda Studio is the tool you will use to define every aspect of your project:
from datastore classes, attributes, and methods to the client-side HTML pages, CSS files, and
JavaScript code. Wakanda Server will act as both your database engine and web server during
development as well as for your final deployment.

Using Wakanda Studio, you will create all the different aspects of your project. Some of these
parts that you create will only run on the server; while other portions you will design
specifically for client-side execution in a web environment. What follows is an introduction to
the key concepts that we will be working with throughout this document.

Model

The model is the collection of all the datastore classes used by your web application. Everything
you define as part of the model—datastore classes, attributes, and methods—are only executed
by the server.

While it is certainly possible for client code to call a method on the server, the JavaScript in the
method executes in the server environment and the results of the operation are returned to the
client.

Data Provider (ds)

The data provider is a reference to the application’s set of data as well as the datastore class’s
information and methods. You reference the data provider using the “ds” application-level
object, which has a number of functions to facilitate accessing and manipulating data and/or
classes. Within server-based code (i.e., datastore class methods) ds is the only way to interact
with the data model.

The “ds” object is an interesting and potentially confusing feature in the Wakanda client
environment. The datastore object exists in both the server and client (WAF) code; however,
they are not exactly the same thing. In the server environment, the ds can perform many
operations that simply wouldn’t make sense from a web client perspective. For instance, the ds
object on the server can start, commit, and rollback transactions.

When you write code that will be executed on the server (i.e., datastore class methods) the
“ds” object refers to the datastore. You write code to be executed on the client references the
Data Provider even though you still use “ds” as the object. The Data Provider is the proxy of the
datastore on the client.

Essential portions of the datastore have been proxied over to the WAF. In client-executed code,
you will most often use data provider calls when you need to interact directly with the
database. For instance, when a new query needs to be performed, the data provider will be
used to create a new entity collection to change the data presented to the user. Using the data
provider from within the client-executed code will initiate AJAX calls to the server.

Wakanda Application Framework (WAF)

The Wakanda Application Framework (WAF) is the name given to the client-side JavaScript
framework. The WAF provides the client with the ability to access the backend datastore,
obtain detailed information about a datastore class, manipulate entity collections and entities,
interact with datasources, and handle all communication with the backend in an asynchronous
manner.

3 of 20

While there are frequently many similarities in the JavaScript you write for the backend and
frontend, it is important to keep in mind that the WAF does not possess the same functionality
in the backend datastore object. The WAF contains only those capabilities that are relevant to
code being run in a client-side environment. Additionally, there are many cases where the
syntax of commands differs between the server-side and client-side code.

Entity Collections & Entities

The overall concept of entity collections and entities are identical whether your code is
server-side or client-side. There are however some differences in the syntax of commands you
will use to work with these objects depending on the context: server or client. In a client
environment, most of the functions that operate on an entity collection or entity will require a
more complex syntax in order to perform their AJAX calls to the server in an asynchronous.

Datasources

A datasource is an object unique to the client-side development and has no server-side
counterpart. Datasources are objects that provide a layer of communication between the
widgets on a Page and the underlying data those widgets are meant to interact with.

Datasources are often created for you automatically when you drag a datastore class onto a
widget, for example. You can have multiple widgets on a Page all subscribed to the same
datasource and when the data changes in one widget, all the others will automatically refresh
with the updated values.

Datasources never contain data themselves. Wakanda Studio will usually try to name the
datasource the same as the object holding the actual data. In the case of a datastore class, the
name will be the same although the first letter is in lowercase, e.g. “employee” for the
“Employee” datastore class.

Widgets

Widgets are also a client-side only construct. Widgets can range from simple to complex: from a
Button to a detailed Grid. A widget takes normal HTML controls and provides you with a way to
bind attributes from the datastore class to be displayed or on which to perform specific actions.
When you bind a datastore class to a widget, Wakanda Studio will create a datasource (if a
matching one does not already exist) and the widget will be bound to that datasource.

Because widgets are bound to datasources, when the data changes in one widget, any other
widget using the same datasource will be updated as well. In addition, if data is changed in the
datasource itself, all widgets will be subsequently updated.

Widgets often provide a number of built-in events for you to provide your own code.

Flattening the Difference Between Server and Client

Wakanda does its best to flatten out the distinction between server code and client code. The
general concepts of the datastore closely match the data provider and are the same in both
environments.

Both environments use an object named “ds” to perform their actions, thus reducing the
learning curve despite some differences in syntax.

Likewise, the concepts of entity collections and entities remain the same despite a few
differences in syntax.

4 of 20

Hands-On Example

Wakanda development is heavily dependent on widgets, which are complex interface objects
that have been built into the product. Widgets such as Grids, Text Inputs, Radio Buttons,
Checkboxes, Combo Boxes and Buttons are all available in Wakanda Studio to be added to your
Pages. Once a widget is placed on your Page, simply drag a datasource to the widget to bind the
two together, which then simply and elegantly handle all the complexities normally associated
data-driven web solutions.

As soon as you bind a datasource to a Grid, you can immediately run the page and view the data
in your datastore class. Add an Auto Form widget bound to the same datasource and you can
now edit entities for the selected element in the Grid. Add some Buttons to the Page that are
bound to the datasource and you instantly have next/previous/first/last/add capabilities, still
without having written any code yet.

As a developer, you’ll find yourself concentrating on the more enjoyable parts of writing web
applications rather than the underpinnings of shuffling data back and forth from datastore to
client. You’ll be able to focus more clearly on the end-user experience, on designing rather
than implementing, and on utilizing the modern capabilities of HTML, CSS3, and JavaScript to
create solutions that will rival desktop applications.

A Simple Example

If you’ve already gone through the Quick Start manual, you will know how to create the
following:
1. Create a datastore class “Person” with the following attributes:

firstName
lastName
wages
birthdate
comments

2. In a Page, create a Grid.
3. Drag and drop the “Person” datastore class on top of the Grid. The “person” datasource is
created automatically.
4. Add an Auto Form to your Page and drag the “person” datasource on top of it.
5. Add five buttons to your Page and define the datasource to “person” and select the following
actions:

First
Previous
Next
Last
Create

Now that your Page is complete, let’s run it. The end result should look something like this in
your browser window:

5 of 20

Click on the “New” button, which has the “Create” action. A blank entry in the Grid appears as
well as an empty entry in the Auto Form in which you can add new entities.

Let’s add one more thing to make this useful and to try out a bit of code. Add a Text Input
widget, named “queryString”.

In the “On Change” event, add the following code to query the datastore when the user changes
the value in the “queryString” Text Input widget:

queryString.change = function queryString_change (event)
{
 var q = 'lastName="' + queryString + '*"';
 sources.people.query(q);
};

That was easy, but how does it work?

This might be a premature topic to cover and we don’t mean to scare you off; but some people
like to know where they’re heading before they start the journey. Let’s take a look at the HTML
code generated by our Wakanda page and break down the pertinent parts. The source for our
Page will look something like this:

<!DOCTYPE html><html>
<head>
<title>Simple Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="generator" content="Wakanda GUIDesigner"/>
<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>
 <meta name="wakanda-version" content="5 build 5.136979"/>
 <meta name="wakanda-build" content="5.136979"/>
 <meta name="WAF.config.loadCSS" id="waf-interface-css" content="styles/index.c
 <meta name="WAF.config.loadCSS" id="waf-project-css" content="/application.css
 <meta name="WAF.config.loadJS" id="waf-script" content="scripts/index.js"/>
 <meta name="WAF.catalog" content=""/>
 <meta data-type="dataSource" data-lib="WAF" data-source="Company" data-source
</head>
 <body id="waf-body" data-workspace-width="0" data-workspace-orientation="port

>>> references to all of our widgets (removed for brevity)

6 of 20

 </body>
</html>

The first thing you may notice is the brevity of the underlying source. The Grid and Auto Form
widgets are nothing but standard <div> tags with numerous custom attributes. In fact, all the
objects on the Page are just standard HTML elements with custom attributes added to them.

In the <head> section of our form, there are a few <meta> tags worth mentioning. The
“generator” meta tag identifies the page as a Wakanda document so Wakanda Studio knows to
render it in the GUI Designer. There are additional <meta> tags for each of the datasources we
created on our page. Additionally there is a <meta> tag reference to a CSS file that is
associated with the Page.

The Wakanda “Loader”

So, how does all this come together as the complex objects, actions, and visual presentation
experienced by the user? Near the bottom of the source of this Page, there is a reference to a
WAF JavaScript file that is responsible for translating all these tags into functional objects at
runtime.

The Loader.js file does many things. First, for each datasource on your page, it will construct a
customized datasource object in memory. The object it builds for a datasource whose origin is a
datastore class will have different methods and attributes from one whose origin is an array or
variable. For a datastore class datasource, the Loader will create proxies for all the datastore
class methods and it will create properties off the object to directly access the values in
attributes of the currently selected entity.

The Loader then processes the page and instantiates all of the complex widget objects on the
form. The creation of the widgets will cause a series of actions in which the widgets set up
listeners for the various events each is interested in from its datasource. When the Loader is
done, the user’s web page will have been transformed into the useable interface you have
created. The datasources will then begin firing off their respective events, beginning with
making AJAX calls to retrieve any initial sets of data.

When all is complete, the Loader will have significantly modified the page’s DOM. A “View
Source” on the document will only show the sparse initial HTML, but the DOM in memory has
been filled with numerous new objects. As a Wakanda developer you will need to get
comfortable with working with and manipulating the DOM of your pages.

The Loader also pre-loads a number of useful frameworks for you to use: jQuery and jQuery UI.
The jQuery framework is an indispensible part of the WAF, and is readily available for use in
your code. The Loader handles the loading of the JavaScript and CSS files associated with your
Page. The Loader makes a number of optimizations in the way all these files are loaded to
reduce the number of file requests to the server and minimize the amound of data to be
transferred.

Any CSS or JS files that you want loaded, should be specified in the Properties tab of your Page
via the Wakanda Studio so that the Loader can take responsibility for adding them in the proper
sequence. Because the Loader’s actions are taking place after the initial page has been
delivered to the client, you cannot count on the page objects being defined until the Loader has
completed its tasks. Therefore, the following would be invalid:

7 of 20

<head>

</head>

Instead of placing your startup functions in the head of the document, there is an “On Load”
event for the Wakanda page that will be run after the Loader has completed its initial setup.

Debugging

All modern browsers have some form of debugger that will let you explore the underlying DOM,
put breakpoints in your JavaScript code, and evaluate the state of objects as you step
line-by-line through code.

Using the JavaScript debugger in your browser allows you to find out what is happening as the
code on your Page is executed.

8 of 20

Introduction to Datasources

The cornerstone of Wakanda client development is the datasource object. A datasource is a
Wakanda object that manages information and acts as a dispatcher for events. Its main purpose
is to provide data to widgets and to inform widgets when values have been modified.

A Wakanda datasource does not contain the data that it provides. Instead, it relies upon
another construct to house the data. A Wakanda datasource can be based on five different data
origins:

datastore class,
relation attribute,
variable,
array, or
object.

When a datasource is based on a datastore class or relation attribute, it uses the data provider
to interact with Wakanda Server. However, when a datasource is based on a variable, array, or
object, its origin is a local JavaScript construct.

The datasource purpose is twofold: provide a number of conveniences to ease developing with
Wakanda and to act as a dispatcher between the actual data-bound objects and the widgets on
your Page. Multiple widgets can “subscribe” to the same datasource. When the content of the
datasource has changed, it will notify all subscribing widgets so they may each take appropriate
action.

Widgets depend on a datasource to provide them with the data they display. Datasources are
either an entity collection (datastore class or relation attribute) or a browser-side item such as
a variable, array, or object.

Datasources Based on Datastore Classes and Arrays

Conceptually, a datasource based on a datastore class or relation attribute is a mash-up
combining the concept of an entity collection that expresses its currently selected element as
an addressable entity.

Datasources based on arrays try to behave as similarly as possible to those based on a datastore
class since both are representing multiple elements. Regardless of whether the origin of the
datasource is an array, datastore class, or relation attribute, the role of the datasource is to
keep track of the data and maintain a pointer to one of its items as the “current element.”
Additionally, the datasource promotes the attributes of the current element to the datasource’s
properties, allowing simple references such as:

var currentPersonName = sources.people.fullName;

The ability of a datasource to track both the collection of elements as well as the “current” one
is a powerful convenience. This capability lets you place on your page a Grid widget displaying a
selection of elements and an Auto Form widget with the details of the currently selected
element. When both the Grid and Auto Form are bound to the same datasource, changing a
value in the Auto Form will automatically update the value in the Grid. Add a Button widget to
your Page bound to the same datasource with its automatic action set to “next” and each time
the user clicks on it, the position of the currently selected element will advance by one and
automatically refresh both the element displayed in the Grid and Auto Form.

Another type of datasource can be created from a 1->N relation attribute of a datasource you
already have defined on the Page. This is called a relation attribute datasource and will
expose an entity collection that represents the related entities of the current item of its parent

9 of 20

datasource. This allows you to display “children” collection of entities in a second Grid as you
step through the “parent” entities.

Datasources Based on Variables and Objects

Datasources based on variables or objects, on the other hand, are based on individual elements
and simply reference the data contained in those objects.

Regardless of its type, a datasource does NOT contain data; it only points to the object
containing the data. Consider the datasource to be a “wrapper” for your data and the wrapper
has been extended with additional properties and methods to ease development and
communication with your widgets. This is an important distinction to make and can be
particularly confusing when the datasource’s origin is a JavaScript variable. For instance, if you
create a datasource whose ID is “myVar” and whose origin is “myVar,” you will end up with two
distinct items: “sources.myVar” representing the datasource object and “myVar” representing a
JavaScript variable that stores the data. If you want to change the value of the JavaScript
variable, you would need to do the following:

myVar = 'new value'
sources.myVar.sync(); //advise the datasource of our change

//or since array-based datasources are JavaScript objects…
friends.push({Name:'Dan', Age: 47, Gender:'Male', Birthdate:'09/09/1963'});
friends.push({Name:'Dave', Age: 50, Gender:'Male', Birthdate:'03/24/1960'});
friends.push({Name:'Melinda', Age: 41, Gender:'Female', Birthdate:''});
friends.push({Name:'Wendee', Age: 41, Gender:'Female', Birthdate:'' });
sources.friends.sync(); // tell the datasource to update our widgets

Any time you programmatically change the values of JavaScript objects being referenced by a
datasource, you must inform the datasource of the change by issuing a sync() command. This
call will force the datasource to reload its data from the underlying source and notify all the
widgets subscribed to it. You do not need to do this if the end-user changed the data from
within the widget. Widgets typically handle advising their datasource of any changes made by
the end user, which in turn will cause the datasource to update the original variable with the
updated value.

By default, Wakanda Studio will often set the datasource ID to be the same as the underlying
source object. However, the datasource ID can be renamed without any issues. If you are
comfortable with the fact that “sources.myVar” is a different object than “myVar” then keep
them the same. We’ve found that for datasources whose origin is a JavaScript variable/object
that maintaining the same ID is often convenient. However, for datasources whose origin holds
multiple elements (i.e., whose origin is a datastore class, relation attribute, or array), we often
rename our datasource ID to be descriptive of how we intend to use it on our Intreface page.

So, for a datasource based on our “Person” datastore class we may give the ID “people”
because this more clearly expresses the multiplicity of our data. There may also be cases in
which you have multiple datasources defined for the same class, in which case you do need to
come up with a unique naming convention. For example, you may want to have two Grids on
your page in which your “Person” entities are divided between “friends” and “enemies”; each
Grid can be based on a separate datasource, but share a common datastore class (though
presumably different selection criteria).

Referencing Datasources

The WAF takes the set of datasources defined on a Page and attaches each one as an attribute
of an object named “sources”. As an example, a datasource whose ID is “people” will be

10 of 20

referred to in code as sources.people.

Datasources can also be used apart from widgets when you want to interact with data
directly. When referring to the attributes of a datastore class datasource, you can refer to them
as follows:

sources.people.firstName

11 of 20

Synchronous vs. Asynchronous Coding

In Wakanda, all client-based functions can be called either synchronously or asynchronously. On
the other hand, server-based calls are synchronous by nature. Only when we consider executing
code in a web-based client-environment does it become necessary to consider the impact to the
user of executing code in a synchronous fashion.

In a web environment, synchronous calls to a backend database can be very disruptive to the
user’s experience. While a synchronous call is executing, all user-interaction with the Page is
suspended until the operation concludes. If the user clicks a button, causing a lengthy search,
the screen will appear frozen and nothing is redrawn until the results were returned.

The Wakanda Application Framework (WAF) provides an asynchronous way to execute every
method that involves communication with the backend server. The synchronous mode of
executing calls is still supported though discouraged in a production environment.

Wakanda determines if a method will execute asynchronously based on the signature of the
parameters passed to the call. If a set of “Options” is provided to a function, it will execute
asynchronously.

For some methods, there is no asynchronous support because the nature of the method does not
require additional communication with the backend server. For instance, getCurrentElement(
), getPosition(), and isNewElement() can each determine their return value from the data
already loaded as part of the datasource.

Each command that supports asynchronous calling allows for two parameters in addition to
others specific to the given function: “options” and “userData”.

options

The options parameter allows for a set of values and/or functions to be provided to the called
method. The exact list of options varies per method; however, they all support the passing of a
JavaScript function to handle the “onSuccess” and “onError” events. Let’s examine the simple
command to save changes to the current entity in a datasource:

sources.people.save({onSuccess: function(event) {
 //the save was successful
 //include any subsequent code here
 },
 onError: function(event){
 //the entity did not save
 //you can get the error from event.error
 alert(event.error[0].message);
 }});

In the case of “onSuccess” and “onError”, a JavaScript function must be provided. The function
passed will be called back when the given operation completes its task. In our example above,
we included an anonymous function. Anonymous functions can be a useful shortcut if you have a
modest amount of code to execute for the event. If you have more elaborate code or code that
needs to be consolidated and used across a number of events, then you can pass named
functions in it as well:

function handlePeopleSave {
 // do a bunch of complex stuff here
 };

 sources.people.save({onSuccess: handlePeopleSave,
 onError: function(event){
 //the entity did not save

12 of 20

 //you can get the error from event.error
 alert(event.error[0].message);
 }});

The “event” object that is returned to the function handling “onSuccess” or “onError” will
contain a variety of attributes that are relative to the context. For instance, in the onSuccess of
a query you will obtain your results from “event.entityCollection”. Likewise, a call to
ds.getEntity will see its successful results in event.entity.

userData

An additional parameter in most asynchronous calls is an object we’ll refer to as userData. The
userData parameter is optional and its exclusion will not affect whether the command is
executed asynchronously. You can pass any JavaScript object type as a valid parameter: from a
simple string to a complex array of objects.

The userData parameter provides a means for you to pass information on to the “onSuccess” or
“onError” handler methods. Why would you need to do this? Well, keep in mind that your
command is executing asynchronously and the user has been returned control to continue
interacting with your Page. Suppose that the user move ahead and changes the currently
selected entity in your datasource before the “onSuccess” event of your save operation is
called. If your onSuccess method needs to refer to anything relative to the context at the time
the save was invoked, you would need to provide that information (or a way to access that
information) via the userData parameter.

The data you pass in userData will be available inside the callback function through the
event.userData object afterwards.

// theAge, theWage and theState are JavaScript variables
 ds.Person.query("age > :1 and wages > :2 and state = :3",{params:[theAge,theWage,theStat

13 of 20

Querying

Wakanda projects are data-driven solutions. As such, one of the more common tasks you will
perform is searching your data and presenting the results to your users. In this section, we are
going to explore the various search-related functions and the scope of entities that each acts
upon.

Most of the examples in this section are based on the following datastore class named Person.
This class has two relationships to itself through the “father” and “mother” relation attributes
that will help us highlight how related entities are loaded.

The primary function used for searching is query(). The query() function can be called on those
objects referencing a collection of entities and is usually applied to the datastore class. Queries
can be performed at the data provider level, on either datasources or entity collections. For
instance, the following example will search at the data provider level (all entities in the class)
and return a collection of Person entities matching our criteria.

ds.Person.query("lastName='Smith'");

If you come from an SQL background, you will find querying and working with the return results
a bit different in Wakanda. Queries in Wakanda are quite powerful, allowing you to include
criteria across many relation attributes in datastore classes. However, in Wakanda all those
relationships are defined at the datastore class level. Where SQL uses ad hoc joins between
classes in a query, Wakanda depends on declared relationships. This can hardly be viewed as a
limitation when the Wakanda search language so easily enables you to implement complex joins
with little effort. For instance, the following line of code will find all the people whose
grandfather is named “Joe.”

ds.Person.query("father.father.firstName='Joe'")

In an SQL query you express your SELECT list along with your search criteria and the result
returned to you is a set of data that has been decoupled from the underlying entities. A

14 of 20

Wakanda query, on the other hand, always returns a collection of entities, representing all the
attributes of the underlying datastore class. When that entity collection is coupled with a
datasource on a Page, your users are able to freely navigate the entity collection with access to
all the attributes you have exposed to them.

The Wakanda Server-Side Concepts manual covers many aspects of querying the datastore on
the backend and most of these concepts also apply to querying in the WAF. Instead, in this
manual we will focus on the ways in which querying behaves differently on the client.

There are a number of factors in executing code on the client that necessitate different
behavior than the same code executed server-side. For instance, a query executed on the
server that returns thousands of results is easily manageable because you are working directly
with server-based objects. However, the same search from a client-environment suffers the
extra burden of transmitting those results from server to client.

When a web client (via the WAF) executes a query, the entire entity collection is generated on
the server but by default only the first 40 entities (or the value defined in the datastore class’s
Default Top Size property) are transmitted to the client. While this number can be customized
with each query, the goal is to quickly return data to present to the user. You might think that
this would create great hardship for the developer in tracking which collections of entities have
been retrieved, but it does not. The developer can simply code the application as though all
the entities have been loaded.

When the code performs any operation on an entity not yet received by the client, the WAF will
execute a new REST call and obtain the next set of entities containing the entity needed. A
useful way to see this behavior in action is to watch the Console in Firebug as you page through
entities in a Grid. As you scroll through the Grid, you will see subsequent REST calls executed to
retrieve additional collections of entities. If you drag the scrollbar down to the bottom of your
list in a large collection of entities, you will see that only a single REST call is made to pull the
data for those entities in your display, not the data for all the entities in between.

Once received by the WAF, the entities are cached on the client.

Data-retrieval optimization is not the only means by which Wakanda addresses the needs of
client-executed code. Like most commands in the WAF, queries can be performed
asynchronously so that control is returned immediately to the user while the server is executing
and sending the results. The following line will execute a query synchronously and the end user
will not be able to perform any action while the query executes:

var myCollection = ds.Person.query("lastName = 'S*'");

If this code were executed as part of a button script, the user would find their screen frozen
until the results were returned. Using the standard methods discussed earlier for executing
code asynchronously, we can perform this search and give immediate control back to the user:

ds.Person.query("firstName='*a*'", { onSuccess:function(event) {
 var myCollection = event.entityCollection;
 });

This method of execution greatly enhances the user experience in a web environment. When
the asynchronous calls are combined with the optimized data-retrieval built into the WAF, the
developer is able to build solutions that are highly responsive to user interaction.

As previously mentioned, queries can be performed on the data provider, on datasources, and
on entityCollection objects. The behavior of each type of query differs slightly.

Querying on the Data Provider

15 of 20

In the Wakanda Server-Side Concepts manual, you were introduced to the datastore
(referenced as ds) along with all its methods and attributes. The WAF has a proxy of the
datastore called the Data Provider, which is also referenced using “ds”. One of the services that
the data provider offers in class-scope functions is querying. It should be noted that the “ds”
reference on the server is a completely different object than the “ds” in the WAF. The WAF’s
version of “ds” is limited to those operations necessary from a client-development viewpoint
and as such is a subset of the functionality found on the server. Additionally, same-named
functions in the “ds” may have different and more complex parameters in the WAF to account
for things like asynchronous execution.

In the WAF, a query can be performed on the data provider much the same way it is executed
on the server, with the return result being an entity collection. Queries on the data provider
assume all entities of the datastore class are the basis for the search:
ds.Person.query(searchCriteria) is equivalent to ds.Person.all().query(searchCriteria).

When executed asynchronously, the resulting entity collection can be obtained in the
event.entityCollection attribute as follows:

ds.Person.query("lastName='Smith'", {
 onSuccess:function(event) {
 var myCollection = event.entityCollection;
 sources.people.setEntityCollection(myCollection);
 }
 });

The above example assumes that the Page has a datasource named “people”. A query of this
type is executed on all the entities in the datastore class. In the code above, the results are
then assigned to the datasource’s entityCollection (which in turn would propagate the changes
across all widgets subscribed to the same datasource).

Querying on an entityCollection Object

A query performed directly on a pre-existing entityCollection object will apply its criteria only
to those entities already in the entity collection. In the following example, let’s assume the
Person datastore class contains 1,000 entities, sequentially numbered:

var myCollection = ds.Person.query('ID<=100'); //searches the datstore class
 var myResult = myCollection.query('ID>95'); //searches only within the collection

The resulting entity collection in myResult will only contain those five entities that formed the
intersection of the two queries. Just keep in mind that queries based on entity collections
behave like a subquery.

A query based on an entity collection fully supports the asynchronous method as follows:

//get a handle to the datasource's entityCollection
 var currentSet = sources.people.getEntityCollection();

 //perform a query only against those items in our current collection
 currentSet.query("age>40",{onSuccess: function(event){
 //assign the results back into our datasource
 sources.people.setEntityCollection(event.entityCollection);
 },
 onError: function(event){
 //handle any error condition here
 }});

Querying on a Datasource

16 of 20

The most common way you are likely to interact with data on your Pages is through
datasources. Since all the widgets on your Page are subscribed to a datasource for their
information, operating directly with the datasource is the most expedient way to perform
searches.

Datasources have a lot of conveniences built-in for the developer and querying is no exception.
When a query is performed on a datasource object, the WAF assumes that the results should
replace the datasource’s current entity collection. Therefore, rather than calling it as a
function that returns an entity collection, it can be called as a method:

sources.people.query('firstName="John"');

This synchronous example finds all the people named “John” and replaces the datasource’s
current entity collection with the new values. If you have a Grid whose datasource is “people”,
the entity collection will be automatically updated.

The scope of a query performed on a datasource is all the entities in the datastore class. This
may seem counterintuitive since the user is often viewing a subset of entities within
datasource-bound objects like Grids. However, with a datasource query performing much like a
dataprovider (ds) query, the developer is given the easiest shortcut for the most common type
of action.

Note that when Wakanda creates a datasource for a datastore class, it names the datasource
the same as the class (transformed in lower camelcase, e.g., the “LineItems” datastore class
creates a datasource named “lineItems”). You can, of course, modify the datasource name to
better describe its purpose if you’d like.

Datasources have a function named filterQuery() that can be used to perform a subquery on
the current entity collection:

sources.people.filterQuery('age>40');
sources.people.filterQuery('age>40',{onSuccess:function(event){
 //do something here
 }});

Queries on a datasource can be executed asynchronously as well. Since the assignment of the
results to the current entity collection is handled automatically, you might find that your
onSuccess call has nothing to do:

sources.people.query('firstName="John"', {onSuccess:function(){}});

It is not necessary to actually do anything in the onSuccess function since its mere presence as
part of how you execute the statement will set the function to execute asynchronously.

Note: For more information about asynchronous execution, please refer to the Executing an
Asynchronous Call section in the Dataprovider API.

Sorting in a Query

The syntax of the query string you provide to the query() function supports some additional
capabilities in how you express your request. You can also specify an order by clause as part of
your query:

var myCollection = ds.Person.query('lastName = "S*" and age < 50 Order by age desc');

The benefit of expressing your sort criteria as part of your query is the optimization you achieve
by having the server perform both operations before any data is returned to the client. The
above statement produces the same results as:

17 of 20

var myCollection = ds.Person.query('lastName = "S*" and age<50');
myCollection.orderBy('age desc');

However, in the second example, the server would have initially sent the client the first set (40
or as defined by the datastore class's Default Top Size property) of entities of the resulting
query. When the subsequent orderBy() function is called, the server will order the entities and
transmit the first set of entities in the resulting entity collection again.

Extra Options

When a query is executed asynchronously, there are a number of additional options that may be
included as part of the syntax. The basic format of the query() command is as follows:

query(queryString, {options}, userData)

As you’ve seen in previous examples, the “options” common to most asynchronous calls are:

onSuccess: function(event){/*handle onSuccess*/},
onError: function(event){/*handle onError*/}

Additional options are:

params: [x,y,z],
 autoExpand: String,
 queryPlan: Boolean,
 pageSize: Number (defaults to 40 unless otherwise defined),
 progressBar: ProgressBarID

Note: For more information regarding these options, refer to Defining Queries (Client-side).

Params

Wakanda allows for up to nine placeholder values to be inserted into your query string. Too
often developers need to build query strings by concatenating backend entity references with
user-supplied data. By using placeholders, you can write more generic code with fewer errors.
Assuming you have a JavaScript variable named findName, the following query can be applied:

var myCollection = ds.Person.query('lastName= :1',{params:[findName]}, userData);

Wakanda will provide all the proper escaping of characters like quotes within the parameters.

The placeholder syntax is optional except for the specific case when you want to use an entity
as your search criteria. As an example, suppose we want to find all the children of the
currently selected Person in our datasource:

var theFather = sources.people.getCurrentElement();
 sources.people.query("father = :1", {params: [theFather],
 onSuccess:function(event){
 //handle results
 },onError: function(event){

 }});

In this example we’ve taken an entire Person entity as assigned to the theFather variable and
used the JavaScript object itself as our placeholder value.

autoExpand

18 of 20

When a query is performed in Wakanda, an entity collection is returned with all the attributes
of the datastore class. However, only those attributes that can return scalar values actually
have data returned. In our People class, all the attributes will have data values except for the
“father” and “mother” relation attributes. Rather than pull the data from the corresponding
related entities, Wakanda will instead return an object that indicates that the attribute is
“deferred”. Only if a subsequent request tries to access the related entity will Wakanda issue
the additional REST call to obtain the data.

At the time you execute a query, if you know you will need access to the related entities, you
can use the autoExpand option. AutoExpand will force Wakanda to pre-load and provide data
for the related entities specified. In the following example, we will apply the autoExpand
option on the “father” attribute, but not on the “mother” attribute. The “mother” entity will
need to be manually loaded:

sources.people.query('ID<100',{autoExpand: 'father'});

 //The datasource now has an entity collection with an autoExpanded father

 //When the current entity of the datasource changes, let’s display
 //the mother and father

 PeopleEvent.currentEntity = function (event)
 {
 var html = '' ;
 html += sources.people.fullName + ' is the son of '+sources.people.getAttributeValue('fa
 sources.people.mother.load({onSuccess:function(event)
 {
 var motherEntity = event.entity;
 html+= 'this mother is '+motherEntity.fullName.getValue();
 $('#display').html(html);
 } });

 };

AutoExpand is not necessary for alias attributes in your class. These attributes are obtained by
the server and treated as scalar values in the data returned by the query. If you find yourself
frequently using the same relation attribute, you might consider creating an alias attribute.

It is not uncommon to need the same attribute auto-expanded every time a search is
performed. There is a special function available on datasources allowing you to indicate which
related datastore classes you always want to auto-expand. The declareDependencies()
function allows you to specify one or more datastore classes to auto-expand in any subsequent
query. This function is typically called in the onLoad event for the page:

sources.people.declareDependencies("father","mother");

When a widget, such as a Grid, is configured to display data from a datasource's related entity,
it will automatically declare a dependency for the source to assure that the data is always
available. For example, suppose your “people” datasource is bound to a Grid and configured to
display fullName, age, and father.fullName. The Grid widget will see that you intend to include
the father.fullName value and will issue a declareDependencies(‘father’) for the datasource on
your behalf.

If you know the specific attribute in the related datastore class that you need expanded, you
can specify it directly for better server optimization:

sources.people.declareDependencies("father.fullName","mother");

19 of 20

queryPlan

If the queryPlan option is set to true, the query returns its queryPlan along with the resulting
entityCollection object. The queryPlan will be returned as an attribute of the entityCollection
object (i.e., event.entityCollection.queryPlan).

pageSize

The pageSize option provides the developer with a way to change the default number of
entities to batch send to the client for each REST call. By default, this value is set to 40 unless
you have specified another value in the datastore class's Default Top Size property.

progressBar

If you expect your queries to take a large amount of time to execute, you may want to include a
Progress Bar widget on your Page. Once you have added this widget to your Page, you can pass
its ID as an optional parameter to the query() command:

sources.people.query('firstName = "S*"',{progressBar: myProgressBarID});

The server will establish a unique progress indicator specific to the current user’s session and
the Progress Bar on the Page will automatically start its periodic polling of the server to update
its value. This whole process functions asynchronously so the user is able to perform other
operations on the page while the search continues to be executed.

20 of 20

