
Git Services

Wakanda includes Git features that will help you manage the evolution of your solutions and files.
These features are designed to share code as well as to handle multi‐developer projects and
solutions.
Note: Git is a distributed revision control and source code management system. For more
information about Git, please refer to the Git page on Wikipedia or go to the Git official website.

http://en.wikipedia.org/wiki/Git_%28software%29
http://git-scm.com/
http://git-scm.com/

Overview

Why Use Git?

As explained on the Git official website, Git is a distributed revision control and source code
management system. Integrated in Wakanda, it basically addresses three main issues regarding
project management:

Revision control (or source control): Using Git, you can track and take control over changes to
your source code. This means that you can go back in your version change‐history, check and
revert modifications, merge different versions, and so on.
Remote development: Using Git, you can work on a solution locally and deliver it at any time
to your remote Wakanda production server.
Multi‐user development: Using Git, several developers can work on the same project and
share modifications through smart push and pull commands. Potentiel conflicts are handled
through advanced features that allow you to merge, edit or ignore modifications.

Git Main Features

Git implementation in Wakanda provides you with the following main features, mainly available
through the Git button menu in the Wakanda Studio toolbar:

Commit locally: This is the basic Git feature. Commiting means taking an instant picture of
your application files and thus being able to compare, revert or push them to remote
locations.

Log...: Displays all Git commands executed by Wakanda Studio.

History...: Displays a window of Gitk, a standard commit viewer for Git.

Push from GitHub/Pull to GitHub: This feature allows you to save or to get your solution files
on the GitHub server. This feature allows you to have incremental backups of your application
in the development process, or to share files between several developers.

Clone a Solution from GitHub...: You can create a local clone (exact copy) of any Wakanda
solution published on the GitHub server.

Pull from Solution Server/Push to Solution Server: Using this feature, you can develop locally
and update the files when necessary on a remote Wakanda Server; you can also work from

http://git-scm.com/

different locations or develop as a team.

Clone a Solution: You can create a local clone (exact copy) of any Wakanda solution published
on the GitHub server.

Use Git tools: Git provides you with comparison tools that allow you to compare, check,
revert, merge, or ignore modifications applied to commited files.

Typical Git Scenario

The following sequence illustrates the way GitHub features can be combined in a multi‐developer
and remote server environment:

Before the first step, we assume that a Git repository has already been defined on the
Wakanda Studio machine.

In the first step, the developer performs a Pull from Git Server action to synchronize its local
version with the GitHub web site. This is useful, for example, when a newer version of the
solution has been pushed by another developer or from another machine (at home for
example).

In step 2, the developer has modified the solution files. After local tests, they decide to
replace the current version on GitHub and on the Wakanda Solution Server (production
server).

In step 3 and 4, another developer has pulled the solution files and performed some edits.
They then pushed the new version to the GitHub server.

We can assume that in the upcoming steps 5 or 6, the modified solution, once approved, will
be pushed to the Wakanda Solution Server.

Installation

To be able to use any of the Git features, you must first install Git on your computer.
The Git installer is provided with Wakanda All‐in‐one installers: in this case, you just need to launch
the Git installer on your computer.
If you did not use a Wakanda All‐in‐one installer, you may need to check whether Git is installed on
your computer (see the following paragraph).
Note: Wakanda Studio works with Git servers over HTTP, thus there is no need to configure SSL
certificates and SSH tunnels.

Checking Git Installation

To find out whether Git is installed on your computer, select Git Settings... from the Wakanda
Studio Git menu:

If Git is not installed, the Download Git link is displayed in the upper right of the dialog box:

You can click on the link and download the latest release from the Git download page. Then,
follow the on‐screen instructions provided by the standard Git installer. No specific
installation is required for Wakanda and you can either keep the default installation settings
or customize them according to your needs.

If Git is installed, the git version is displayed in the upper right of the dialog box. This
information is the most reliable way to know whether Git has been installed properly in your
system:

http://git-scm.com/downloads

Git Settings

You can configure several Git settings that will be taken into account when Git client operations are
performed on your computer. Basic operations such as creating a local or a remote repository can be
performed from this dialog box.
You can either define a set of settings separately for each solution or globally for your Wakanda
Studio.

Displaying the Git Settings Dialog Box

Git settings are set using a dialog box in Wakanda Studio. Select Git Settings... from the Git button
menu:

The Git Settings dialog box is then displayed

Settings options are displayed or hidden depending on your current choices.
Note: You can check in the upper right corner that Git is installed on your computer. If the
"Download Git" message is displayed, please refer to the Installation page.

Define Git Settings

This area allows you set the paths where Git files are located, as well as the ignoring rules.

Git path

This area contains the path to the main executable git file on your computer. This file is mandatory

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Installation.200-973049.en.html

if you want to use Git features.

A check mark () is displayed if the file is set correctly. The path field was filled in automatically
when you installed Git.
If the Git file is not defined, click the magnifying glass () to select the file on your disk.

Diff and Merge tool paths

These areas contain paths to the utility software you want to use respectively for comparing and
merging two versions of the same source file. These tools will be invoked automatically by Wakanda
Studio when you select the Diff or Merge commands from the Git Tools menu (see Using Git Tools
section). You can set the same tool for both features.
You can use any tools you are familiar with. For example, you can install Kompare, tkdiff, P4V
(perforce), SourceGear, etc. In the following example, the Perforce diff & merge tool is defined:

A check mark () is displayed if the file is set correctly. When the file is not defined, click the
magnifying glass () to select the appropriate file on your disk.

Git ignore

This area allows you to define the files that shoud be excluded from the Git file monitoring. Usually,
you will not want to check modifications done to data files (.waData) or to local log files, user
settings...‐‐ note that solution and project settings should be included. Files described in the "Git
ignore" area will not be taken into account for commit, push and pull actions.
Note: These settings are not taken into account when you clone a solution from the GitHub server.
By default, a set of file names to ignore is defined using several rules. You can customize this list by
adding or removing rules:

to add a rule, hit the Return key and enter the necessary string
to remove a rule, select the corresponding line and press the Del key
use the * character as a wildcard for file names. For example, *.waBackup describes the
Wakanda backup file, whatever its actual name (for instance, "People.waBackup")
use the # character to add a non‐processed comment, usually to describe a rule.

You can also add or remove file(s) in this list through the Wakanda Studio integrated tools (using
Follow and Ignore contextual menu commands). For more information, please refer to the Using Git
Tools section.
The "Git ignore" list is saved automatically:

in a file named .gitignore located at the same level as the Solution folder when you save
settings only for the solution
within the git extension preference file when you save the settings as default settings (for
more information about Wakanda extension files, please refer to the User preferences
paragraph in the Wakanda Studio Extensions manual).

Create local Git Repository

This button allows you to create a local Git repository for the current open solution. The button is
disabled if the solution has already been defined as a local Git repository, or if no solution is
currently open.
The local Git repository contains all the local files and folders that Git will monitor. Creating this
repository is the first step required for using Git features.

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Using-Git-Tools.200-988854.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Using-Git-Tools.200-988854.en.html
http://doc.wakanda.org/Wakanda-Studio-Extensions/API-Preferences.201-939302.en.html#964769

In Wakanda, the local Git repository automatically includes the solution folder and all its dependent
projects. You can define this repository when you create a new solution or at any time, using this
button in the Git Settings dialog (for more information, please refer to the Local Git Repository.
When you click the Create local Git Repository button:

Wakanda Studio defines the current solution folder (and its projects) as a local Git repository
Every file icon included is visually modified to show that it is monitored:

For more information about monitored file icons, please refer to the Understanding the
Repository File Status paragraph.

Note that the repository is immediately created and activated, even if you do not validate the
Settings dialog box. The Create local Git Repository button is disabled after the operation is
performed.

Set up your GitHub server

This area allows you to define and configure your access to a GitHub server. GitHub is a web‐based
hosting service for software development projects that use Git. Open source projects can use it to
share and exchange source code for free.
The GitHub server account will be used as the target server when using Push to GitHub and Pull from
GitHub menu commands. For more information on these commands, please refer to the Push to
GitHub/Pull from GitHub paragraph.
When you select Use GitHub, additional options are displayed in the settings dialog box, allowing
you to configure your GitHub access:

Username and Password

These areas allow you to enter your GitHub identifiers. These values will be passed to the GitHub
Web site for each action (publish, pull or commit/push). Registration is free for a basic account.
Click here to go to the account creation page on GitHub.

Username: GitHub user login.
Note that the string entered is automatically used by Wakanda Studio to suggest the Git
account URL, since account URLs are usually based on the user name.

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html#987808
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Push-to-GitHubPull-from-GitHub.200-973077.en.html
https://github.com/users

If your Git URL is different, you can overwrite the string provided.

Password: GitHub account password.
If you do not want your password to be stored in your application Git settings, you can leave
the area blank. Later, you will be asked to enter your password in a standard dialog box when
required:

Password required when logging to GitHub

Git Account URL

In this area, enter the basic URL of your account on GitHub. It is usually built in the following way:
https://github.com/your login
It points to your personal space on the server, where you can access your repositories,
contributions, profile, etc.
A check mark () is displayed if the URL entered corresponds to a valid URL on the GitHub server.
If you click on the magnifying glass (), a new window of your standard browser is opened with the
URL entered.

Email

Enter the email address associated with your Git account.

Publish on GitHub

The Publish on GitHub button helps you to create or update a remote repository on GitHub for the
open solution. If no solution is currently open, this button is disabled.
You can create a remote repository on GitHub to benefit from the many features of the site, and to
meet two kinds of needs:

having a remote backup of your application files that keeps track of changes
sharing code with other developers.

When you click on the Publish on GitHub button, Wakanda Studio first asks you to provide a
description for the code change:

Then:

If there is no remote repository defined for the solution on the GitHub server, Wakanda Studio
will display a dialog box allowing you to create the repository:

If you click OK, Wakanda Studio creates a remote repository at the following URL:
[https://github.com/your_login/solution_name]. For example, for the "arnaud4D" login and a
solution named 'Contacts", the remote repository would be
"https://github.com/arnaud4D/Contacts/".
Note that you can also create a remote repository directly on the GitHub server at any time.

If a remote directory has already been defined for the solution on the GitHub server, it will be
updated with the local files (corresponding to the latest local commit state). This is basically
the same effect as selecting the Push to GitHub command.

Publish repository as private

By default, Wakanda Studio will create a public repository on GitHub, so that the code can be shared
with any other developers.
If you want to keep things private, check the Publish repository as private. In this case, Wakanda
Studio will create a private repository on the GitHub server: only you will be allowed to push or pull
versions to and from the repository. This option is usually intended more for solution backups.
Note: This option requires that you have an upgraded (paying) account on GitHub.

Local Git Repository

A local Git repository contains all the local files and folders that Git will monitor for a solution. This
repository is added on your computer and monitors your local copy of the solution.
Creating this repository is the first step required for using all Git features such as committing locally
and pushing or pulling to and from remote servers, as illustrated below:

If you try to execute a Git function without first having created a local repository, Wakanda Studio
displays the following dialog box:

Creating a Local Git Repository

You can create a local Git repository in three ways:

when a solution is created on disk.
To create a local Git repository for a solution being created, check the Create a Git repository
option in the "New Solution..." dialog box and click OK:

Note: For more information about solution creation, please refer to the paragraph.

at any moment using the Git Settings
You can create a local Git repository for the open solution using the Git Settings dialog box.
To do this, select the Git Settings... command from the Git button menu and click on the
Create local Git repository button:

Note: For more information about the Git Settings dialog box, please refer to the Git
Settings section.

at any moment when calling the Commit Locally menu command
When you call the Commit Locally command from the Git button menu for the first time,
Wakanda Studio will display the following dialog box if no local git repository has been
defined:

Click Yes to create the required local Git repository. It is created automatically and you are
then prompted to provide a description for the pending commit action.

Recommendations about File Names

Git operations use file names extensively and character encoding is an issue when exchanging files in
heterogeneous plaftorms. Although characters such as "é" or "â" are supported in Wakanda file

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html

names, when using Git it is recommended that you avoid non‐Roman characters for solution,
project and file names. It will help preventing any compatibility issues related to Git character
encoding changes.

Location of the Repository

The Git repository is a folder named .git (hidden by default).
In Wakanda, the local Git repository is created automatically in the parent folder of the solution
folder (that is, the folder that contains the .waSolution file). It will take into account all files and
folders stored in this parent folder (usually, the solution folder and all the project folders).
For example, if your solution consists of the following folders:

When you create a local git repository, it will be added at the same level as the solution folder:

Note: The .gitignore file is defined in the Git Settings.
Warning: Since all files and/or folders present at the same level as the solution folder will be
monitored by the Git local repository, you should be careful when you store elements at this
location.
In addition, if you use a Wakanda solution created with a version prior to Wakanda v3, the solution
folder architecture may not be compatible with the local git repository mechanism (the solution
files and all project folders were formerly gathered in a single folder). In this case, create an
additional folder level to isolate your solution folder.
In any case, when Wakanda Studio detects that elements which are neither a solution folder nor a
project folder are located at the same level as the parent solution folder, it displays an alert dialog
box to warn you:

If you click Yes, make sure that the foreign contents will not interfere with the git monitoring
features.

Understanding the Repository File Status

When a local Git repository has been defined, you can check the status of your solution files visually
in the Solution Manager and, based on this, decide whether a commit action is needed. Monitored
file icons are modified with respect to their current status.
The following icons are used:

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html
http://doc.wakanda.org/--v3/What-s-new-or-modified-in.903-858710.en.html
http://doc.wakanda.org/Solution-Manager/Solution-Manager.100-1051404.en.html

Not a monitored file

Monitored file ‐ No change
Monitored file ‐ Edited file

Monitored file ‐ Added file

Monitored file ‐ Ignored file

File statuses are updated in real time. When you quit and reopen Wakanda Studio, files are
automatically monitored.

Commit Locally

Executing a local commit is the basic action that you need to do when using Git features. All Git
synchronizing and tracking functions such as push, pull, diff or merge tasks are based on local
commits. For example, if you push your local version of a solution to GitHub (see Push to
GitHub/Pull from GitHub), the latest commit is used, not the version that is open in Wakanda
Studio.

What is a local commit?

Executing a local commit is like taking a picture of your solution and recording any changes of state
for each monitored file, compared to the previous local commit. All solution and project files are
monitored, except those which are to be ignored (see the paragraph).
When you execute a local commit, the following operations are performed:

files added to the solution or its projects are added to the local repository
new versions of all modified files are saved in the local repository
files removed from the solution or its projects are removed from the local repository.

Only modified elements are actually "committed", which optimizes the process. The same principle
is used when you push or pull versions from remote servers.
Usually, you will execute a local commit after you have implemented a new algorithm or
functionality, or after a certain period of work. Executing successive local commits allows you to
keep track of the evolution of your application, and thus to revert to any previous version.
Moreover, a local commit can be pushed to a server, allowing several developers to share code or to
compare changes.

Executing a local commit

To be able to execute a local commit, you need to be in the following context:

Git is installed on your machine (see Installation)
a solution is open in Wakanda Studio
you have defined a Local Git Repository for the solution.
Note: If the local repository is not already defined, it will be created automatically before the
commit; an alert dialog box will warn you:

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Push-to-GitHubPull-from-GitHub.200-973077.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Installation.200-973049.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html

To execute a local commit, you can select:

Commit locally in the Git menu,
or Commit in the solution explorer contextual menu:

The following dialog box is displayed, allowing you to provide a description for the commit:

You can keep the default string as is (it is incremented for each commit) or write another
description for more clarity. This information is helpful when you use advanced Git features for
comparing or reverting modifications.

Push to GitHub/Pull from GitHub

GitHub related commands handle the direct link between your Local Git Repository and a remote
repository created by the GitHub Web server for the same solution.

Working with a remote solution located on the GitHub server allows you to save incremental backups
of your application and/or to share files between several developers.

Configuring the GitHub connection

To be able to use Push to GitHub and Pull from GitHub commands, you need to configure your
connection with GitHub. In both cases, the following elements are required to establish the
connection:

You must have a valid account on GitHub. Registration is free for a basic account. Click here to
go to the account creation page on GitHub.
Your Git account must be set in the Wakanda Studio Git Settings dialog box.
The solution opened must have a Local Git Repository and, if you want to push to GitHub, at
least one Commit Locally must have been done.
The solution opened must have a remote repository on GitHub. This operation is detailed in
the paragraph.

The README.md File

You can use a "readme" file whose contents are displayed by default when the solution is open on
GitHub. This file can be used to provide information about the solution.
To do this, you just need to add a file named README.md at the root folder of your solution before
pushing it to GitHub. A default README.md file is automatically created at the appropriate location
when you create a new blank solution:

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html
https://github.com/users
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Commit-Locally.200-973064.en.html

When you open the GitHub repository for this solution, the README file is opened by default:

You can change its content to give any information on his particular solution. To edit the file on the

GitHub server, just click on its name.

Push to GitHub

The Push to GitHub action will commit the latest version of your solution, as it was stored by the
last local commit, onto the GitHub server. Keep in mind that any non‐saved files or non‐committed
files will not be sent to the GitHub server.
To update the GitHub server with the latest local version of your solution, select the Push to GitHub
command in the Git button menu:

If the connection to GitHub is correctly configured (see above), the latest version of the solution is
automatically saved to GitHub. On the GitHub server interface, you can see the result of the push
operation:

In this example, the "Camping" solution has been commited once and the "Mobil" Project has been
updated for the third time.
Note: The Git extension automatically uses the current branch when pushing to a remote server. If
you want to display or change the current branch, refer to the Using Branches section.

Pull from GitHub

Pulling from GitHub means getting the latest version of the solution opened in Wakanda Studio and
stored in the remote repository, from the GitHub server.
In the standard scenario (see), this operation would take place after another developer has updated
the solution, or if you want to synchronize several computers with the same version of the solution.

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Using-Branches.200-1014712.en.html

To update your local solution with the latest version located on the GitHub server, select Pull from
GitHub in the Git button menu:

If the connection to GitHub is correctly configured (see above), the latest version of the solution
stored on the remote GitHub repository is loaded in your Wakanda Studio and overrides the
currently open files if necessary. In the Solution Explorer, you can identify added or edited files
using their standard icons (for more information, please refer to the paragraph). Deleted files are
automatically removed from the Solution Explorer.
If the pull is successful and does not produce any conflict, all changes pulled from GitHub become
automatically the current committed state of the repository. There is no need to commit anything
afterwards.
In case of a conflict, a user‐guided merge operation is needed (see Using Git Tools), which will
produce modifications. You need then to execute a Commit Locally action to store locally the
resulting files.

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Using-Git-Tools.200-988854.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Commit-Locally.200-973064.en.html

Push to Solution Server/Pull from Solution Server

The Push to Solution Server and Pull from Solution Server menu commands allow you to work on a
local version of your solution and to update a remote production Wakanda Server on demand. For
example, you can push edited application files once features are tested locally and approved.
These commands also allow you to develop as a team or to use different computers: using the Pull
from Solution Server command, you can get the current running version of a solution locally at any
time.

Note: In Wakanda versions prior to v4, you were able to connect to a remote server and debug files
(see paragraph). The push/pull features make server updates much more simple.

Configuration

To be able to use Push to Solution Server and Pull from Solution Server commands, you need to
have the following:

Two computers: one running a Studio for debug and another running a server.
An exact copy of the same solution must be installed on each.
On the server machine, all the following TCP ports must not be blocked by any network
devices (firewall, proxy, etc.) for the Studio:

admin port (usually 8080)
SSL admin port (usually 4433)
application port(s) (usually 8081, 8082, etc.)

In addition, Git must be configured properly:

Git must be installed on both Wakanda Studio and Wakanda Server machines.
A local Git repository must be created (if this is not already the case) for the local solution
(see the Local Git Repository paragraph).
It is not necessary to create a Git repository on the remote server; however, Wakanda will do
it automatically the first time that a new version of the solution is pushed onto the server.

Access to the remote Solution Server

By default, Wakanda Studio works with the local Wakanda Server stored at the same level, as stated
in the paragraph. (With this default configuration, the same solution files are shared between
Wakanda Studio and Wakanda Server, and there is no need for pulling or pushing updated files).
You need push and/or pull features when you work with a remote server. To connect computer A
(studio) and computer B (server) for pushing/pulling operations:

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html

1. Launch the Wakanda Server on computer B and open the solution.
2. Open the same solution with Wakanda Studio on computer A.
3. On computer A, select the Connect to Other Server... item in the Run menu:

The following dialog box is displayed:

This dialog box lists all the Wakanda Server solutions broadcast over the local network (this
feature uses the Bonjour protocol).
Note: You can also right‐click on the Solution icon in the Solution explorer and choose Select
Solution Server Location... In the select dialog box, you can define the server that will be
accessed by default when starting Wakanda Studio.

4. Fill in the IP address and Port of the server (computer B).
You have to enter the SSL Admin port (usually 4433).

5. Click Connect.
Wakanda Studio opens a connection to the server and, if the Studio and the Server are running
a solution with the same name, you will get the message: "Studio is connected to
xxx.xxx.xxx.xxx:xxxx". On computer A, if you click Run File, it will be executed on the remote
server.

If the connection is established successfully, you can start working with the remote server. You can:

debug the solution (see)
push or pull the solution to and from the server (see below).

To stop the connection with the remote solution server, right‐click on the Solution icon in the
Solution explorer, choose Select Solution Server Location...and select one of the local connections.

Note: If Wakanda's has been activated for your solution, you will be prompted to enter a username
and a password to connect to the server.

Only users belonging to the "Admin" group can connect remotely to a secured solution. For more
information, refer to the Configuring Admin Access Control section.

Git services can have their own permissions configuration. In this case, make sure that Git users
have Admin access rights; otherwise access will be denied for pushing or pulling files.

Push to Solution Server

The Push to Solution Server option allows you to update a remote solution server with the latest
local version of your solution. In a production context, this feature allows you to implement
functions locally and then to push them publicly once they are validated.
To update the solution server:

1. Establish the connection to the remote server (see above).
2. Select Push to Solution Server in the Git button menu.

Wakanda Studio automatically performs a local commit of the solution (reminder: a Local Git
Repository must have been defined on the Wakanda Studio side).
All new, edited or removed files, including new projects, are sent to the Wakanda Server and
Git tries to merge them with the previous version on the remote end.

If the solution files are updated successfully, the server reloads the new solution.
If a conflict is detected (i.e., one of the remote files is more recent than a pushed file),
Git will refuse the operation. This is the case, for example, when another developer has
edited the same file in the meantime. Git will ask you to Pull files first and you will
then need to use Git merge tools to handle the conflict.

Note: Wakanda only checks that both the local and remote solution have the same name; it does not
check their contents. If you connect two different solutions with the same name, the push
operation will be accepted but merge operations will give unexpected results.

Pull from Solution Server

The Pull from Solution Server option allows you to update your local copy of the solution with the
version currently running on a remote Wakanda Server. This feature allows you to get the latest
public version of an application. In a multi‐developer team, each developer could, for instance, pull
the latest solution each morning.
To update the local solution with the version on the server:

http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Local-Git-Repository.200-973059.en.html

1. Establish the connection to the remote server (see above).
2. Select Pull from Solution Server in the Git button menu.

All new, edited or removed files, including new projects, are taken from the Wakanda Server
and Git tries to merge them with the version on your local machine.

If the solution files are updated successfully, Wakanda Studio automatically performs a
local commit of the solution.
If a conflict is detected (i.e., one of the local files is more recent than a pulled file), Git
will refuse the operation. You will then have to use Git merge tools to handle the
conflict.

Note: Wakanda only checks that both the local and remote solution have the same name; it does not
check their contents. If you connect two different solutions with the same name, the push
operation will be accepted but merge operations will give unexpected results.

Cloning a Solution on GitHub

This feature allows you to get an exact copy of a Wakanda solution saved in a GitHub repository and
then open it locally and monitor it. With this feature, all saved files and folders are downloaded
onto your local disk.
The clone feature makes it easy for you to distribute Wakanda projects.

Cloning the solution

Cloning a solution requires the following:

You must have Git installed on your machine (see Installation)
You must have opened a valid GitHub account (see).

Unlike the "pull" Git features, the solution cloning function does not require that a local Git
repository already exists on your disk. This repository is automatically created during the cloning
process.
To clone a solution:

1. Select Clone a Solution from GitHub either from the Wakanda Home area or from the Git
button menu:

The Git Clone dialog box is displayed (empty by default).
2. Enter the requested identification and destination information:

Username and Password: These are your Git account's identifiers.
Repository URL: Remote URL on the GitHub server where the Wakanda solution that
you want to clone locally is stored. This is usually something like
"https://github.com/userName/SolutionName.git"
Name of the cloned solution destination: Name of the parent cloned solution folder on
your disk.
This folder will contain all downloaded solution files and folders. It is automatically
saved in a "{Disk}/Wakanda solutions/" folder. If a solution folder already exists at this
same destination, it is replaced.

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Installation.200-973049.en.html

3. Click Clone to launch the download process.
Wakanda copies the files locally. You can check the progress of the operation at the bottom
of the window:

When the copy is complete, the open solution (if any) is closed and the cloned solution is
launched and is ready to be used. The cloned solution is automatically monitored in a local Git
repository.

Using Branches

Wakanda Studio allows you to use Git branches. Branches are independent copies of the same
project, on which you can work separately and that you can merge later on. Branches are built upon
the same local Git repository. Typically, you can create a branch to work on a new module while
continuing to develop or debug the main branch. Once the module is finished, you can merge the
two branches to benefit from your new module in the main branch.
In the Wakanda Studio main window, you can see which branch you are working with, and switch
between branches.

Creating Branches

You create new branches for your Git repository using one of the various Git tools available over the
Internet (this feature is not currently included in Wakanda Studio). For example, you can create a
branch using "Git Extensions" (http://code.google.com/p/gitextensions/):

Selecting Branches

In Wakanda Studio, the current branch is displayed at the bottom of the window:

The current branch is the branch you are working with. This means that if you edit any code, add
and/or remove files or commit changes, these modifications will only be applied to this branch. All
other branches will be left untouched until a merge operation is performed.
By default, if no branch has been created, only the master branch is proposed.
When one or several branches have been created, they are listed in the menu associated with the
branch area. You can change your branch at any moment by selecting a different one in this menu:

http://code.google.com/p/gitextensions/

Each time you select a branch in this menu, the current branch is closed before the selected one is
opened. An alert dialog box warns you if any files in the current branch are not saved or committed.

Using Git Tools

Wakanda Studio integrates Git tools that will help you managing differences in monitored files and
resolving conflicts.
Note that Diff and Merge tools are available through the Wakanda Studio interface, but need to be
installed and declared through the Git Settings. No tool is provided by default, you need to select
you preferred tool.

Standard Git tools are available through the Git Tools submenu of the Solution explorer contextual
menu:

You can call this menu on:

any edited file (red status icon): in this case, the edited file will be processed
the solution root or any folder (including a project folder): in this case, all edited files located
in the folder will be processed sequentially

Diff

Selecting the Diff menu command calls the Diff tool set in the Git Settings dialog (see the section).
Whatever the installed Diff tool, Wakanda Studio "asks" it to compare two versions of the selected
file(s):

the last saved version,
the version stored in the last local commit.

If both versions are different for a file, the comparison window of the Diff tool is displayed. Then,
you can view the differences and decide whether you want to merge changes or to revert files. The
comparison window depends on the tool you installed. For example, here is the Perforce
p4merge.exe comparison window:

http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html
http://doc.wakanda.org/Wakanda-Studio-Reference-Guide/Using-Git-Services/Git-Settings.200-973069.en.html

Revert

Selecting the Revert menu command allows you to replace the selected file(s) by the version(s)
stored by the last local commit. Any modifications performed in the file(s) since the last local
commit are removed. When you select this command, you are asked to confirm the revert
operation. If no "revertable" file is selected, an alert box is displayed and the command does
nothing.
This command can be applied to a single file or to a file set. To select several files to revert:

you can apply the command to a folder of your solution (you can right‐click on the solution
folder or the project folder themselves) to select all files within the folder, including files in
subfolders:

or, you can apply the command to a set of files that you selected individually using a standard
file selection shortcut (Shift+click or Ctrl/Cmd+click):

All selected "revertable" files are then displayed in the Revert dialog box. If more than one file is
listed, you can uncheck each file that you do not want to revert in the list. To check/uncheck all
files in the list, you can use the Select All checkbox:

This command will actually modify the selected file contents at the operating system level;
consequently, if the selected file was open in Wakanda Studio, its modification outside the editor
will be detected and you will be prompted to reload the file to display the latest version:

Ignore

Choosing the Ignore menu command will exclude the selected file(s) from the Git monitored files of
the solution. Each selected file path is added to the "Git ignore" settings file (for more information
on this file, please refer to the paragraph). The Ignore menu command is an alternate way to add
files to the .gitignore file.
If the selected file is already listed in the "Git ignore" list, the command does nothing.
This command is useful for example when you create a local file that you do not want to monitor.
You just need to click on the file and select Ignore from the Git Tools menu. The file icon is then
modified and the file path is added to the "Git ignore" list:

Follow

Choosing the Follow menu command will force the selected file(s) to be monitored by Git. Each
selected file is removed from the ".gitignore" file if it was listed in (for more information on this file,
please refer to the [#title id="973069" anchor="987286"/] paragraph). If the selected file is not in the
"Git ignore" file list, the command does nothing.
When you select this command, the "followed" file will get the appropriate icon depending on its
previous status (added, modified, removed). For more information, refer to the paragraph.

Add untracked files to repository

When you select the Add untracked files to repository command, Wakanda Studio will look for all
files which are not tracked and also not ignored by Git within selected folder(s). This feature is
particularily useful to check or handle changes done to the repository folder while the solution was
closed.
If untracked files are found, Wakanda Studio will display a dialog box allowing you to add them to
the local repository:

If you click Yes, added files are tagged and will be included in the next Commit action.

If no untracked files are found, the following dialog box is displayed:

Log and History

Log and History are two utility options available in the Git button menu:

Log...

When you select the Log... option from the Git menu, a Git log window is displayed:

This windows contains all the Git commands executed by Wakanda Studio during the current session.
The log window is updated dynamically each time a Git command is called.
The Git log is particularly useful when a Git command fails and you want to know exactly what the
Wakanda Studio was doing, and see the full error message.
Note that the Git log is handled only in memory and is never saved to a file. The log contents are
deleted when you close the session.

History...

The History... option displays a gitk window, displaying the repository history:

gitk is a standard history application for Git and it is shipped with Git by default. It allows you to see
all the commits done for a given repository. You can also see diff results directly in this application
for each commit.
For more information about gitk, you can refer to this webpage (unofficial documentation).

http://gitolite.com/1-basic-usage/gitk.html

