
Users and Groups

The methods and properties in this chapter allow you to manage the Directory, Group, and User objects. These objects are used to handle your
application's security access system. The whole system is detailed in the Data Security and Access Control chapter.

Directory

This section describes the properties and methods available for a Directory object.
By default, the Directory object is built upon the directory file of the solution (named solutionName.waDirectory).
Note: In future versions of Wakanda, it will be possible to plug the Directory object into an external directory like a LDAP catalog.

internalStore

Description

The internalStore property contains the entire Wakanda users and groups directory as a datastore object. This internal datastore is built on the
solution's directory file.
You can use this property to explore the solution's current directory and execute any kind of query (see example).
This property is only available for native Wakanda directories.

Example

In the following example, we can select all the users whose password field is empty:

var pusers = directory.internalStore.User.query("password = null || password =''");
// User is one of the datastore classes in internalStore
// password is one of the User class attributes

addGroup()

Group addGroup(String name [, String fullName])

Parameter Type Description
name String Name of the new group
fullName String Full name of the new group

Returns Group New group

Description

The addGroup() method creates a new group in the solution's Directory and returns it as a Group object. The group will be created with the
properties you passed in name and fullName and will automatically be assigned an ID.

In name, pass the group's name property. This parameter is mandatory for the group to be created and must follow Wakanda's Naming
Conventions.
In fullName, pass the group's fullName property.

Note: If you try to create a group with a name that already exists in the datastore, an error is generated.
Once a group has been created, you can use the putInto() method (for users) or putInto() method (for groups) to include users or groups into the
group.
Keep in mind that the group will be created in the solution's current directory, but will not be saved on disk until you call the save() method on
the directory.

Example

Create the "dev" group in the current directory:

var newGroup = directory.addGroup("dev" , "Developers");
directory.save();

addUser()

User addUser(String name [, String password[, String fullName]])

Parameter Type Description
name String Name of the user
password String User's password
fullName String User's full name

Returns User Newly created user

Description

The addUser() method creates a new user in the solution's Directory and returns it as a User object. The user will be created with the properties
you passed in name, password, and fullName. Once created, the user will automatically be assigned an ID.

In name, pass the user's name property. This parameter is mandatory for the user to be created and must follow Wakanda's Naming
Conventions.
In password, pass the user's password. It can be changed afterwards using the setPassword() method. Note that password comparisons are
case‐sensitive.
In fullName, pass the user's fullName property.

Note: If you try to create a user with a name that already exists in the datastore, an error is generated.

http://doc.wakanda.org/Users-and-Groups/User/ID.303-727151.en.html
http://doc.wakanda.org/Users-and-Groups/Group/name.303-727667.en.html
http://doc.wakanda.org/Programming-and-Writing-Conventions/Naming-Conventions.300-661504.en.html
http://doc.wakanda.org/Users-and-Groups/Group/fullName.303-728644.en.html
http://doc.wakanda.org/Users-and-Groups/User/putInto.301-754058.en.html
http://doc.wakanda.org/Users-and-Groups/Group/putInto.301-755720.en.html
http://doc.wakanda.org/Users-and-Groups/Directory/save.301-731734.en.html
http://doc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://doc.wakanda.org/Users-and-Groups/User/ID.303-727151.en.html
http://doc.wakanda.org/Users-and-Groups/User/name.303-727020.en.html
http://doc.wakanda.org/Programming-and-Writing-Conventions/Naming-Conventions.300-661504.en.html
http://doc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://doc.wakanda.org/Users-and-Groups/User/setPassword.301-726992.en.html
http://doc.wakanda.org/Users-and-Groups/User/fullName.303-727117.en.html

You may want to use the putInto() method to add the new User to one or more groups in order to define the user's access rights.
Keep in mind that the user will be created in the open directory, but will not be saved on disk until you call the save() method on the directory.

Example

We want to create a user named "Henry" in our solution:

var newUser = directory.addUser("Henry", "123", "Henry Charles");
directory.save(); // do not forget to save the changes

computeHA1()

String computeHA1(String userName , String password [, String realm])

Parameter Type Description
userName String User name
password String User password
realm String Authentication realm

Returns String Digest HA1 hash value

Description

The computeHA1() method returns the HA1 key resulting from the combination of userName, password and (optionally) realm parameters using a
hash function.
HA1 keys can be used to store passwords with a high level of security. These keys result from applying a hash function that encrypts data so that it
is impossible to retrieve the original information, i.e. the user password. Wakanda stores HA1 encrypted password keys in the solution's directory.
This method allows you to set up a customized user management system, using a datastore class for example, and to benefit from the secure hash
function to store and compare password values.
In userName and password, pass the string values to encrypt.
You can also pass a customized string value in realm. This value will be combined with the other parameters to generate the HA1 key. If you omit
this parameter, the default "Wakanda" string is used as realm value. This value is used by Wakanda to generate password keys in the standard
.waDirectory file.
Note: This method is case sensitive for every parameter.

Example

This example shows how to use this method to set up a custom user management and authentication system. Users are stored as entities in a
"User" datastore class. You defined a HA1Key storage attribute and a password calculated attribute.

Here is the code for the password calculated attribute:

password :
 {
 onSet:function(value)
 {
 this.HA1Key = directory.computeHA1(this.name, value);
 // we only store the HA1 key
 },
 onGet:function()
 {
 return "****"; //could also return Null
 }
 }

Note: You could check the password compliance with some security rules (not blank, number of characters, etc.)

To validate a login request, you create a function validatePassword for the "User" datastore class (applied to the entity):

entityMethods :
 {
 validatePassword:function(name, password)
 {
 var ha1 = directory.computeHA1(name, password);
 return (ha1 === this.HA1Key); // true if validated, false otherwise
 }
 }

With this authentication strategy, you need to pay attention to the following cases:

if users want to change their name, they have to change their password as well;
since you cannot control the code processing sequence, such a following instruction could fail because the engine may process the 'password'
attribute before the 'name' attribute:

var u = new ds.User({name:"jones", password:"123"});

To avoid these cases, example 2 provides an alternative strategy that uses an uuid attribute instead of the name to compute the HA1 key.

http://doc.wakanda.org/Users-and-Groups/User/putInto.301-754058.en.html
http://doc.wakanda.org/Users-and-Groups/Directory/save.301-731734.en.html
http://doc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://doc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html

Example

In this example, as in example 1 the custom security strategy is based on a "User" datastore class with a HA1Key storage attribute and a password
calculated attribute. However, this time we will also use an ID attribute of the "uuid" type with the Autogenerate option:

Here is the code for the password calculated attribute:

password :
 {
 onSet:function(value)
 {
 this.HA1Key = directory.computeHA1(this.ID, value);
 // we use the ID to compute the HA1 key
 },
 onGet:function()
 {
 return "****"; //could also return Null
 }
 }

Note that we use the "autogenerated" ID attribute to calculate the HA1 key rather than the user name. This strategy has two advantages
compared to the previous example:

as the ID attribute is automatically generated if not existing, it will be available at any time, even if the 'password' attribute is
accessed before the 'name' attribute when the user is created.
the user will be allowed to change his login name without having to reset its password.

To validate a login request, you define the validatePassword function for the "User" datastore class (applied to the entity):

 entityMethods :
 {
 validatePassword:function(password) //only use the password
 {
 var ha1 = directory.computeHA1(this.ID, password);
 return (ha1 === this.HA1Key); // true if validated, false otherwise
 }
 }

filterGroups()

Array filterGroups(String filterString)

Parameter Type Description
filterString String String to filter group names (starts with), or "" to get all names

Returns Array Array of groups

Description

The filterGroups() method returns all groups whose name starts with filterString in the Directory. The method returns groups defined at all levels
in the Directory.
Pass the characters to be used with the "group name starts with" query in the filterString parameter. If you don't want to filter the group names,
pass an empty string in filterString.
The corresponding groups are returned in an array of groups. If no group is found based on the filterString parameter, an empty array is returned.

Example

We want to get all the groups whose names contain the string "dev":

var devG = directory.filterGroups("*dev"); //groups contain "dev"

filterUsers()

Array filterUsers(String filterString)

Parameter Type Description

filterString String String to filter user names (starts with), or "" to get all user names

Returns Array Array of users

Description

The filterUsers() method returns all users whose names starts with filterString in the Directory. The method returns users at all levels in the
Directory.
Pass the characters to be used with the "user name starts with" query in the filterString parameter. If you don't want to filter the user names, pass
an empty string in filterString.
The users are returned in an array of users. If no user whose name meets the filterString is found, an empty array is returned.

Example

We want to get the users whose name starts with "john":

var arOlds = directory.filterUsers("john");

getLoginListener()

String getLoginListener()

Returns String Name of the loginListener function

Description

The getLoginListener() method returns the name of the loginListener function set by setLoginListener() for the solution, if any. If no
loginListener has been set, the function returns an empty string.

group()

Group | Null group(String name)

Parameter Type Description
name String Name or ID of the group

Returns Group, Null Group object with the specified name or ID, or null if not found

Description

The group() method returns a Group object containing the group corresponding to the name (or ID) you passed in the name parameter.
The name is used to identify the group and is given by the developer when it is created. The ID is an internal unique identifier automatically
generated by Wakanda when the group is created.
The method returns Null if there is no Group with the given name or ID in the directory.

Example

To access a group of the current directory:

var myGroup = directory.group("Accounting"); // creates the group object
var members = myGroup.getUsers(); // gets the list of users (all levels) of the group

hasAdministrator()

Boolean hasAdministrator()

Returns Boolean True if the solution is running in controlled access mode, false otherwise

Description

The hasAdministrator() method returns true if the solution is currently running under the controlled admin access mode, and false if it is under
the free access mode.
The controlled access mode is activated as soon as there is at least one user with a password (or several users with or without passwords) added to
the Admin group. In this mode, administration features, such as server start/stop, access to admin page, and debug, are restricted.
Controlled access and free access modes are discussed in the Configuring Admin Access Control section.

Example

You want to perform some actions depending on the current access status of the solution:

if(directory.hasAdministrator())
 ... ; // actions in controlled access mode only

save()

http://doc.wakanda.org/Users-and-Groups/Directory/setLoginListener.301-871936.en.html

Boolean save([String | File backup])

Parameter Type Description
backup String, File Path or reference for a backup file of the Directory

Returns Boolean true if the directory was saved successfully, false otherwise

Description

The save() method saves all changes made to the open solution directory. Changes are recorded in the solution's directory file, named
solutionName.waDirectory.
You must call this method after you add, modify, or delete a user or a group programmatically.
If you pass the backup parameter, the solution directory is saved at the specified destination. This option is useful to save a copy of the directory
for backup purposes or to use in a "try/cacth" structure in case of a write error in the current directory. You can pass either a full path to a file on
your disk, or a reference to a File object in backup.
The method returns true if the directory was saved successfully, and false if an error occurred.

Example

This example changes the user's password and store it in the directory:

var user = directory.user("ed");
if (user != null) // if the user exists in the directory
{
 user.setPassword("sjk16d"); // only the HA1 key will be stored in the directory
}
directory.save(); // save the directory
directory.save("c:/wakanda/backups/myDir.waDirectory"); //keep a copy

setLoginListener()

void setLoginListener(String loginListener [, Group | String group])

Parameter Type Description
loginListener String Name of function to execute when server receives a login request
group Group, String Group into which to "promote" the listener execution

Description

The setLoginListener() method allows you to set a loginListener function to handle login requests for your Wakanda solution. It can add users
dynamically to the Wakanda session and groups. Dynamic users only exist during the session; they are not stored in the solution's directory.
Like a standard request handler, a login listener function is automatically called by the server when a login request is received. The function
receives user information (name and password or key) and must authenticate them by any custom means: you can use or call a datastore class, an
external directory, another database, etc. Depending on the function result, the request can be accepted, refused, or passed to the regular
Wakanda login. For more information, refer to the Authenticating Users section.
Optionally, you can designate a group in the group parameter where you can pass either:

a group name (string)
a group ID (string)
a Group object

When this parameter is used, the loginListener function will be "promoted" to the specified group during its execution. This means that it will run
with the group's access rights, allowing it for example to access data in protected areas of the application, such as log files or entities. Of course,
once the loginListener function has finished executing, the user is logged with the privileges of their own group.
By default, if the group parameter is omitted, the loginListener function is executed with no specific access rights.
In loginListener, pass the name of the function to execute when a login request is received in custom mode.
The loginListener function must be written as follows:

function LoginListener(userName, passwordOrKey, secondIsAKey);

Parameters

The loginListener function is called with the following parameters:

Name Type Description
userName String Name entered by the user
passwordOrKey String Password entered by the user if logged with login() or (starting with v5) Key associated to the user if logged with

loginByKey()
secondIsAKey Boolean (starting with v5) false if the user logged with login() or true if the user logged with loginByKey()

On the client side, if the user was logged using the loginByKey() method, the secondIsAKey returns true. In this case, the second parameter
received is not a password but the hash key resulting from a computation of the password on the client side, sent by loginByKey(). The key can
result from any custom hash process, it does not necessarily need to be a SHA‐1 key.
This feature allows you to use the same function on the client side and on the server side to compute the key:

on the client, you let the user enter their name and password, then you compute a key from the password. You can then call the loginByKey(
) function with the name and key.

http://doc.wakanda.org/Data-Security-and-Access-Control/Authenticating-Users.200-725903.en.html
http://doc.wakanda.org/Users-and-Groups/Group/name.303-727667.en.html
http://doc.wakanda.org/Users-and-Groups/Group/ID.303-727695.en.html
http://doc.wakanda.org/Directory/Directory-Class/login.301-814977.en.html
http://doc.wakanda.org/Directory/Directory-Class/loginByKey.301-815331.en.html
http://doc.wakanda.org/Directory/Directory-Class/login.301-814977.en.html
http://doc.wakanda.org/Directory/Directory-Class/loginByKey.301-815331.en.html
http://doc.wakanda.org/Directory/Directory-Class/loginByKey.301-815331.en.html
http://doc.wakanda.org/Directory/Directory-Class/loginByKey.301-815331.en.html
http://doc.wakanda.org/Directory/Directory-Class/loginByKey.301-815331.en.html

on the server, the loginListener function is called. You can check the secondIsAKey parameter and, if it is true, instead of comparing the
password (that is not sent in that case), you compare the received key parameter with the local key that you have precomputed and stored
in your user information.

Returned Value

If the authentication is accepted, the loginListener function must return a "user" object containing the following attributes:

return{
 ID: //a UUID string referencing the user. It can be any UUID but must not be an existing user ID,
 name: //a string which will be the user name attribute,
 fullName: //a string which will be the user full name attribute,
 belongsTo: //an array of UUID strings, or
 //an array of group names referencing the groups the user must belong to
 storage: // a Storage object which is the sessionStorage property of the user session
};

If the authentication is refused, the loginListener function must return an "error" object containing the following attributes:

return{
 error: //the error number (passed as a number),
 errorMessage: //the text of the error
};

If you want to pass the authentication to the Wakanda regular login, the loginListener function must return false:

return false; //to continue the login using the standard process (use the internal directory)

Regarding Admin access, the loginListener function will be called only if the Controlled Admin Access Mode is activated ‐‐ that is, if the
.waDirectory file of the solution contains, in the "Admin" group, at least one user with a password. This activation is necessary, even if you do not
use the Directory file to identify your admin users. For more information, please refer to the Configuring Admin Access Control section.

Where to write the code?

The setLoginListener() method needs to be called only once. It may be a good idea to call it in the bootstrap of the main project (either a
file in a "bootStraps" folder at the project root, or a file with the bootstrap role, see getItemsWithRole()). Bootstrap code is automatically
executed when the project is launched.

The loginlistener function must be implemented in a required.js file that is located at the same level as the .waSolution file. Since this
required.js file is evaluated for each JavaScript context created at the solution level, the loginlistener function will be available everywhere
in the JavaScript code (see required.js File).

Note: You cannot use a required.js file that is located at the project level with the setLoginListener() method.

Example

We want to use a custom datastore class to authenticate login requests, except for existing users.

In the "bootstrap" of the project, we define a loginListener:

directory.setLoginListener("myLogin", "Admin");
 // we want the listener to be run with the administrators group's privileges

In the solution's "required.js" file, we write the "myLogin" function:

function myLogin(userName, password)
{
 var p = ds.People({name:userName}); //
 if (p == null) //if the user name does not exist in our datastore class
 return false; //let Wakanda try to find it in the internal directory
 else // the user name is known
 {
 if (p.password == password) //this is given to keep the example simple
 //we should have a more secured challenge here, for example
 //by storing and comparing a hash key
 {
 var theGroups = [];
 switch (p.accessType){
 case 1:
 theGroups = ['Internal'];
 break;
 case 2:
 theGroups = ['Administrator'];
 break;
 case 3:
 theGroups = ['Manager'];
 break;
 case 4:

http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html#958642
http://doc.wakanda.org/Data-Security-and-Access-Control/Configuring-Admin-Access-Control.300-954274.en.html
http://doc.wakanda.org/Global-Application/Application/getItemsWithRole.301-692521.en.html
http://doc.wakanda.org/Architecture-of-Wakanda-Applications/Solution.200-1022674.en.html#1022744

 theGroups = ['Employee'];
 break;
 }
 var connectTime = new Date();
 return {
 ID: p.userID,
 name: p.name,
 fullName:"guest "+p.name,
 belongsTo: theGroups,
 storage:{
 time: connectTime,
 access: "Guest access"
 //in the user session, sessionStorage.access
 //will contain "Guest access"
 }
 };
 }
 else
 return { error: 1024, errorMessage:"invalid login" }
 }
};

Example

We want to use a custom datastore class of the "MyDirectory" application to authenticate login requests, except for users existing in the directory
of the solution.

In the "bootstrap" of the "MyDirectory" project (or of any launched project of the solution), we define a loginListener:

directory.setLoginListener("myLogin", "Admin");
 // we want the listener to be run with the administrators group's privileges

In a "required.js" file created next to the .waSolution file, we write the "myLogin" function:

function myLogin(userName, password)
{
 //get a reference to the current datastore of the MyDirectory application
 //this is necessary because the myLogin function can be called from any project of the solution
 //we 'share' the custom datastore class between all the projects of the solution
 var dsDir = solution.getApplicationByName("MyDirectory").ds;

 var p = dsDir.People({name:userName}); //look for the user in the People datastore class
 if (p == null) //if the user name does not exist in our datastore class
 return false; //let Wakanda try to find it in the solution's directory
 else // the user name is known
 {
 if (p.password == password) //this is given to keep the example simple
 //we should have a more secured challenge here, for example
 //by storing and comparing a hash key
 {
 var theGroups = [];
 switch (p.accessType){
 case 1:
 theGroups = ['Internal'];
 break;
 case 2:
 theGroups = ['Administrator'];
 break;
 case 3:
 theGroups = ['Manager'];
 break;
 case 4:
 theGroups = ['Employee'];
 break;
 }
 var connectTime = new Date();
 return {
 ID: p.userID,
 name: p.name,
 fullName:"guest "+p.name,
 belongsTo: theGroups,
 storage:{
 time: connectTime,
 access: "Guest access"
 //in the user session, sessionStorage.access
 //will contain "Guest access"
 }
 };

 }
 else
 return { error: 1024, errorMessage:"invalid login" }
 }
};

user()

User | Null user(String name)

Parameter Type Description
name String Name or ID of the user

Returns User, Null User object with the specified name or ID, or null if not found

Description

The user() method returns an User object containing the user corresponding to the name (or ID) you passed in the name parameter.
The name is a property of a user, used to log in the application, along with the password (see name).The ID is an internal unique identifier that you
may use in some cases (see ID).
The method returns Null if there is no User with the given name or ID in the directory.

Example

This example accesses a user in the current directory:

var myUser = directory.user("phil"); // creates the user object
var toDisplay = myUser.ID + ", " + myUser.name; // returns two properties in the variable

http://doc.wakanda.org/Users-and-Groups/User/name.303-727020.en.html
http://doc.wakanda.org/Users-and-Groups/User/ID.303-727151.en.html

Group

This section describes the properties and methods available for a Group object.
Group objects, which are defined in the solution's directory file (named solutionName.waDirectory), can contain users or other groups. Group
objects are used to define permissions to your application's resources.
You can get a Group object using the group() method or addGroup() method of the Directory class.

name

Description

The name property contains the name of the Group. The name of a group is used to identify the group in your application, it must follow the
general Naming Conventions of Wakanda.

ID

Description

The ID property contains the internal ID of the Group, which is a UUID that is automatically assigned by Wakanda when the group is created. The ID
cannot be changed. If the group is deleted, its ID is never reused.

fullName

Description

The fullName property contains the full name of the Group. The fullName property value represents the actual name of the group (i.e., "Developer
Group"), compared to the name, which is an ID (i.e., "dev1"). The fullName can be used to display the current group name on an interface page, for
example.

filterChildren()

Array filterChildren(String filtrerString [, Boolean | String level])

Parameter Type Description
filtrerString String String to filter group names (starts with) or "" to get all group names
level Boolean, String true or "firstLevel" = get only first‐level groups,

false or "allLevels" or omitted = get children groups at all levels (default)

Returns Array Array of groups belonging to the group

Description

The filterChildren() method returns an array of the subgroups belonging to the Group, filtered using the filterString parameter. This parameter
applies a 'starts with' query to the group names. To retrieve all the groups belonging the Group, pass an empty string in filterString.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the groups belonging to
Group, including first‐level groups (groups that are directly assigned to a group) and groups that belong to groups belonging to a group (i.e.,
subgroups) at all sublevels. For more information about group hierarchy in Wakanda, please refer to section Users and Groups.
If you pass true or "firstLevel" in the level parameter, only the groups directly assigned to a group are returned. Sublevel groups are ignored.

Example

To get first‐level children groups of the "Managers" group whose names contain "top":

var myGroup = directory.group("Managers"); // creates the group object
var children = myGroup.filterChildren("@top","firstLevel"); // gets the first level filtered children groups

filterParents()

Array filterParents(String filterString [, Boolean | String level])

Parameter Type Description
filterString String String to filter group names (starts with) or "" to get all group names
level Boolean, String true or "firstLevel" = get only first‐level groups,

false or "allLevels" or omitted = get parent groups at all levels (default)

Returns Array Array of groups to which the user or group belongs

Description

The filterParents() method returns an array of the groups to which the User or the Group belongs, filtered using the filterString parameter. This
parameter applies a 'name starts with' query to the groups or users. To retrieve all the parent groups for the User or the Group, pass an empty
string in filterString.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the parent groups of the User
or Group. First‐level groups (groups to which the User or the Group is directly assigned) and parent groups of the parent groups at all levels are
included in this case. For more information about group hierarchy in Wakanda, please refer to the Users and Groups section.

http://doc.wakanda.org/Users-and-Groups/Directory/group.301-727434.en.html
http://doc.wakanda.org/Users-and-Groups/Directory/addGroup.301-755664.en.html
http://doc.wakanda.org/Users-and-Groups/Directory.201-727260.en.html
http://doc.wakanda.org/Programming-and-Writing-Conventions/Naming-Conventions.300-661504.en.html
http://doc.wakanda.org/Users-and-Groups/Group/name.303-727667.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html

If you pass true or "firstLevel" in the level parameter, only the groups to which the User or the Group is directly assigned are returned. Higher level
groups are ignored.
If no group whose name meets the filterString is found, an empty array is returned.

filterUsers()

Array filterUsers(String filterString [, Boolean | String level])

Parameter Type Description
filterString String String to filter user names (starts with), or "" to get all user names
level Boolean, String true or "firstLevel" = get only first‐level users,

false or "allLevels" or omitted = get users at all levels (default)

Returns Array Array of users

Description

The filterUsers() method returns an array of the users that belong directly or indirectly to the Group, filtered using the filterString parameter.
This parameter applies a 'name starts with' query to the users. To retrieve all the users for the User, pass an empty string in filterString.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the users directly assigned to
the Group as well as any users belonging to one of its subgroups at all levels For more information about group hierarchy in Wakanda, please refer
to the Users and Groups section.
If you pass true or "firstLevel" in the level parameter, only the users directly assigned to the Group are returned. Lower level users are ignored.
The corresponding users are returned in an array of users. If no user whose name meets the filterString is found, an empty array is returned.

Example

We want to get all the users whose name starts with "customer_":

var arEmpty = group.filterUsers("customer_");

getChildren()

Array getChildren([Boolean | String level])

Parameter Type Description
level Boolean, String true or "firstLevel" = get only first‐level groups,

false or "allLevels" or omitted = get groups including subgroups (default)

Returns Array Array of groups belonging to the group

Description

The getChildren() method returns an array of the subgroups belonging to the Group.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the groups belonging to
Group, including first‐level groups (groups that are directly assigned to a group) and groups that belong to groups belonging to a group (i.e.,
subgroups) at all sublevels. For more information about group hierarchy in Wakanda, please refer to section Users and Groups.
If you pass true or "firstLevel" in the level parameter, only the groups directly assigned to a group are returned. Sublevel groups are ignored.

Example

We want to get both first‐level and nested groups:

var g = directory.group("dev");
var x1 = g.getChildren(true); // get only groups assigned to a group
var x2 = g.getChildren("allLevels"); // get all groups including nested groups
// x1 <= x2

getParents()

Array getParents([Boolean | String level])

Parameter Type Description
level Boolean, String true or "firstLevel" = get only first level groups,

false or "allLevels" or omitted = get parent groups at all levels (default)

Returns Array Array of groups to which the group belongs

Description

The getParents() method returns an array of the groups to which either User or Group belongs.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the parent groups of the
Group or User. First‐level groups (groups to which the Group or User is directly assigned) and parent groups of the parent groups at all levels are
included in this case. For more information about group hierarchy in Wakanda, please refer to the Users and Groups section.
If you pass true or "firstLevel" in the level parameter, only the groups to which the Group or User is directly assigned are returned. Higher level
groups are ignored.

http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html

getUsers()

Array getUsers([Boolean | String level])

Parameter Type Description
level Boolean, String true or "firstLevel" = get only first‐level users,

false or "allLevels" = get users including subgroup users

Returns Array Array of users in the group

Description

The getUsers() method returns an array of users belonging to the Group.
By default, if you omit the level parameter or if you pass true or "allLevels" in this parameter, the method returns all the users belonging to the
group. First‐level users (users who are directly assigned to a group) and users who belongs to groups that are assigned to the group (i.e., users in
subgroups) at all sublevels are included in this case. For more information about group hierarchy in Wakanda, please refer to the Users and Groups
section.
If you pass true or "firstLevel" in the level parameter, only those users who are directly assigned to a group are returned. Sublevel groups are
ignored.

Example

We want to get both first‐level and all level users:

var g = directory.group("finance");
var x1 = g.getUsers("firstLevel"); // get only users assigned to the group
var x2 = g.getUsers(); // get all users including those from nested groups, for example "account"
// x1 <= x2

putInto()

void putInto(String | Array groupList)

Parameter Type Description
groupList String, Array List or array of groups

Description

The putInto() method adds Group to the group(s) you passed in the groupList parameter. You assign a group to another group to define a hierarchy
of access rights in the datastore. A group can be added to one or several other groups.
Several syntaxes are accepted for the groupList parameter:

A string list of group names or IDs:

aGroup.putInto("sales", "finance", "admin"); // list of group names
aGroup.putInto("HDIKF56FD4XX...","SDFDFFD4XX..."); // list of group IDs;

A list of Group objects:

var group1 = directory.group("finance");
var group2 = directory.addGroup("account");
 aGroup.putInto(group1 , group1); // list of group objects

Note: You can mix group names, IDs, or references.

An array of groups, containing either strings, group references, or both:

var arDev= directory.filterGroups("dev"); //array of group names
aGroup.putInto(arDev);

If you pass an invalid group name or reference in groupList, an error is generated.
If the Group is already included in a destination group, Wakanda just ignores the call (no error is generated).

remove()

void remove()

Description

The remove() method removes the User or Group from the solution's Directory. The user or group reference is also removed from the groups to
which it was assigned.
Keep in mind that the reference will be removed from the solution's open directory, but the change will not be saved on disk until you call the
save() method on the directory.

removeFrom()

http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://doc.wakanda.org/Users-and-Groups/Directory/save.301-731734.en.html

void removeFrom(String | Array groupList)

Parameter Type Description
groupList String, Array List or array of groups

Description

The removeFrom() method removes the Group from the group(s) you passed in the groupList parameter. Once removed from a group, the Group
and its users lose all the assigned access rights in the datastore.
Several syntaxes are accepted for the groupList parameter:

A string list of group names or IDs:

aGroup.removeFrom("sales", "finance", "admin"); // list of group names
aGroup.removeFrom("HDIKF56FD4XX...","SDFDFFD4XX...") // list of group IDs;

A list of Group objects:

var group1 = directory.group("finance");
var group2 = directory.group("account");
 aGroup.removeFrom(group1 , group2) // list of group objects

Note: You can mix group names, IDs, or references.

An array of groups, containing either strings, group references, or both:

var arDev= directory.filterGroups("dev"); //array of groups names
aGroup.removeFrom(arDev);

If you pass an invalid group name, ID, or reference in groupList, an error is generated.
If the Group was not included in a listed group, Wakanda just ignores it (no error is generated).

Permissions

The Permissions class object can be accessed through the application.permissions property.
This object contains a single method that returns available information on defined permissions for the project.

findResourcePermission()

Object | Undefined findResourcePermission(String type, String resource, String action)

Parameter Type Description
type String Type of the resource
resource String Name of the resource
action String Action associated with the resource

Returns Object, Undefined JSON object describing the resource

Description

The findResourcePermission() method returns a JSON object describing the permission defined for the specified type, resource and action. For
example, this method allows you to check that a Group is assigned to a permission.
In the parameters, pass strings defining the permission to find:

type: type of the resource. It can be "model", "dataClass", "method", "attribute", "module", or "service".
resource: name of the resource. It depends on the resource type but can be, for example, "Model", "Model.{DatastoreClassName}.
{MethodName}", "myModule", "myService"...
action: action(s) allowed. It depends on the resource type and can be "read", "create", "update", "remove", "describe", "execute", "promote",
"executeFromClient", or "upload".

Note: For more information on permission definition, please refer to the project's Permissions section.
If the target resource exists, the method returns a JSON object containing each attribute of the permission definition. In particular, it returns the
group ID and any custom property defined for the permission in the .waPerm file.
The method returns undefined if the target resource was not found.

Example

Assuming the following permission is defined in the .waPerm file:

<allow type="module" resource="myModule" action="executeFromClient" groupID="0CD5A2B4253CE940AXXXXXXXXXXXXXXX"
customProperty="toBeChecked"/>

If you execute the following code:

var p = application.permissions.findResourcePermission('module', 'myModule', 'executeFromClient');

the value of p will be:

{
 type: "module",
 resource: "myModule",
 action: "executeFromClient",
 groupID: "0CD5A2B4253CE940AXXXXXXXXXXXXXXX",
 customProperty: "toBeChecked"
}

http://doc.wakanda.org/Global-Application/Application/permissions.303-1058429.en.html

Session

This section describes the properties and methods available for a ConnectionSession object.
ConnectionSession objects are returned by the currentSession() method or the getUserSessions() method.
ConnectionSession objects handle the actual access privileges of a running user session on the server. These privileges can differ temporarily from
the user privileges defined at the Directory level because of the "promote" mechanism. This mechanism allows a function to be executed with the
privileges of a specific group. When such a function is executed from within a user session, the ConnectionSession privileges differ from the user
privileges.
There is one session defined per thread, which means that the same user can run different sessions with different privileges.
For more information about the "promote" mechanism, refer to the Assigning Group Permissions section.

Default Session

By default, if a user runs a session without being logged, a default user session is used. In this case, the currentSession() method returns a valid
session with a user whose name is "default guest" and ID is 00000000000000000000000000000000. This default session supports standard session
features.

user

Description

The user property returns the User who runs the session on the server. The null value is returned when no user is logged for the session; in other
words, when a "guest" session is running.

If the session is run by a non‐logged user, a default user session is used. The user property returns a User whose name is "default guest" and ID is
00000000000000000000000000000000.

Example

To get the user running the current session on the server:

var curSession = currentSession();
var curUser = curSession.user;

storage

Description

The storage property returns the Storage object associated with the current user session. This property gives you a direct access to the
sessionStorage application property for the session.

Example

var mySession = currentSession(); //gets the current session
var myStorage = mySession.storage;
 // myStorage is equivalent to sessionStorage for the session

ID

Description

The ID property contains the internal ID of the session on the server. The ID property value is a UUID that is automatically assigned by Wakanda to
the session when it is opened on the server. The session ID is stored in the cookie sent to the user.

expiration

Description

The expiration property returns the current expiration date and time of the user session.
The expiration date and time of the session is the moment when the user session will be closed automatically on the server if no user query or
action is performed within the thread. On the other hand, the expiration date is postponed for a new lifeTime duration as soon as a user action is
performed in the thread.

lifeTime

Description

The lifeTime property returns the default lifetime of a user session in seconds. By default, the lifetime is 3600, i.e. one hour.
It can be set when the user session is opened using the loginByPassword() or loginByKey() method on the server.

belongsTo()

http://doc.wakanda.org/Global-Application/Application/currentSession.301-816732.en.html
http://doc.wakanda.org/Global-Application/Application/getUserSessions.301-1005567.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Assigning-Group-Permissions.200-725897.en.html
http://doc.wakanda.org/Global-Application/Application/currentSession.301-816732.en.html
http://doc.wakanda.org/Users-and-Groups/User/name.303-727020.en.html
http://doc.wakanda.org/Users-and-Groups/User/ID.303-727151.en.html

Boolean belongsTo(String | Group group)

Parameter Type Description
group String, Group Group to check for current session membership

Returns Boolean true if the current session belongs to the group, false otherwise

Description

The belongsTo() method returns true if the current session belongs to the group.
If the current session does not have membership in the group, belongsTo() returns false but does not generate an error (you have to send a
permission error yourself). If you want to get a permission error, use checkPermission() instead.
You can pass in group either:

a group name (string)
a group ID (string)
a Group object

This method is useful to check membership on‐the‐fly for "promoted" functions.

Example

// we want to check that the session is run under the "Management" group

var session = currentSession();
var isIn = session.belongsTo("Management");
if (isIn)
 {...;}

checkPermission()

Boolean checkPermission(String | Group group)

Parameter Type Description
group String, Group Group to check for current session membership

Returns Boolean true if the current session belongs to the group, false otherwise

Description

The checkPermission() method returns true if the current session belongs to the group and throws an error if false.
If the current session does not have membership in the group, checkPermission() returns false and generates a permission error that you can
handle in your code. If you do not want to get an exception in case of a permission error, use belongsTo() instead.
You can pass in group either:

a group name (string)
a group ID (string)
a Group object

This method is useful to check membership on‐the‐fly for "promoted" functions.

forceExpire()

void forceExpire()

Description

The forceExpire() method makes the user session expire.
Once the method is called, the session expires on the server. This may take some extra time to be accomplished because the server waits until any
tasks running in the thread are finished.
Since the same user can run several different sessions, this method can be used, for example, to limit the number of sessions opened by a single
user.

Example

You want to force the expiration of all user sessions other than the current one (except if it's a default guest session):

var curSession = currentSession();
var user = curSession.user;
if (user.ID != "00000000000000000000000000000000") //default guest sessions
{
 var sessions = getUserSessions(user);
 sessions.forEach(function(item) {
 if (item.ID != curSession.ID) {
 item.forceExpire();
 }
 });

}

promoteWith()

Number promoteWith(Group | String group)

Parameter Type Description
group Group, String Group into which to "promote" the current session

Returns Number Promoted session token

Description

The promoteWith() method temporarily promotes the current session into the group. All actions initiated in the session will be executed with the
access rights associated with the group, in addition to those of the current user. The session will be "promoted" until the end of the hosting thread
(that is, the end of the script execution) or until unPromote() is executed.
Note: For more information about the "promote" action, please refer to the Assigning Group Permissions section.
You can pass in group either:

a group name (string)
a group ID (string)
a Group object

The promoteWith() method returns a token number for the promoted session. This number can be passed to the unPromote() method afterwards.
The method returns 0 if no promotion was actually done (for example, when the user already belongs to the group, or when their access rights are
higher than those of the group).

Example

var token = currentSession().promoteWith('GroupName');
 ... //Code needing elevated access
currentSession().unPromote(token); //back to the initial access rights

unPromote()

void unPromote(Number token)

Parameter Type Description
token Number Session token

Description

The unPromote() method stops the temporary promotion set for the current session using the promoteWith() method. After this method is
called, all actions initiated in the session will be executed with the standard access rights of the current user (if any).
In token, pass the session reference as returned by the promoteWith() method.

http://doc.wakanda.org/Users-and-Groups/Session/unPromote.301-816946.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Assigning-Group-Permissions.200-725897.en.html
http://doc.wakanda.org/Users-and-Groups/Group/name.303-727667.en.html
http://doc.wakanda.org/Users-and-Groups/Group/ID.303-727695.en.html
http://doc.wakanda.org/Users-and-Groups/Session/unPromote.301-816946.en.html
http://doc.wakanda.org/Users-and-Groups/Session/promoteWith.301-816924.en.html
http://doc.wakanda.org/Users-and-Groups/Session/promoteWith.301-816924.en.html

User

This section describes the properties and methods available for a User object.
User objects are based on "users" defined in your solution's directory file (named mySolution.waDirectory). Users are logged in the datastore using
either the loginByPassword() or the loginByKey() method, available in the Application level of Wakanda.
You can get a User object by:

using the user() method or addUser() method of the Directory class.
calling the currentUser() method in the Application class.

name

Description

The name property contains the name of the User. The name property value is required for a user to log into the application along with the
password.

By default, Wakanda assigns "default guest" as name property to non‐logged users.

fullName

Description

The fullName property contains the full name of the User. The fullName property value represents the actual name of the user (i.e., "John Smith"),
compared to the name, which is the ID (i.e., "jsmith"). The fullName can be used to display the current user name on your Pages, for example.

ID

Description

The ID property contains the internal ID of the User. The ID property value is a UUID that is automatically assigned by Wakanda when the user is
created and cannot be changed. If the user is deleted, its ID is never reused.

By default, Wakanda assigns "00000000000000000000000000000000" as ID property to non‐logged users, i.e. "default guest" users.

storage

Description

The storage property returns the Storage object associated with the User. This object is automatically available for each user defined in the
solution and is maintained as long as the Wakanda server is alive (it is not stored after the server shuts down). You can use it for example to write
initialization data at startup or to count the number of times a user logs in or out.
Note that this property is user‐related and not session‐related. The user.storage object is available even when the user is not logged.

Example

We want to store the number of times each user connects to the application. In a custom login method, we increment the user log account (see
full example in the loginByPassword() method description):

model.Person.methods.login = function(userName, password) // the function gets name and password
 {
 var result =loginByPassword(userName, password, 60*60); // session is created in case of success
 if (result) // user identified successfully
 {
 var user = currentUser(); //gets the user running the session
 var logs = user.storage.logs; //gets the user log count
 if (logs == null) // logs key does not exist, it is the first login
 logs = 0; // initialization

 var newLog = logs + 1; // incrementation otherwise
 user.storage.logs = newLog; //stores the new log
 };
 return result; // result is sent to the client
 }

filterParents()

Array filterParents(String filterString [, Boolean | String level])

Parameter Type Description
filterString String String to filter group names (starts with) or "" to get all group names
level Boolean, String true or "firstLevel" = get only first‐level groups,

false or "allLevels" or omitted = get parent groups at all levels (default)

Returns Array Array of groups to which the user or group belongs

http://doc.wakanda.org/Users-and-Groups/User/name.303-727020.en.html

Description

The filterParents() method returns an array of the groups to which the User or the Group belongs, filtered using the filterString parameter. This
parameter applies a 'name starts with' query to the groups or users. To retrieve all the parent groups for the User or the Group, pass an empty
string in filterString.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the parent groups of the User
or Group. First‐level groups (groups to which the User or the Group is directly assigned) and parent groups of the parent groups at all levels are
included in this case. For more information about group hierarchy in Wakanda, please refer to the Users and Groups section.
If you pass true or "firstLevel" in the level parameter, only the groups to which the User or the Group is directly assigned are returned. Higher level
groups are ignored.
If no group whose name meets the filterString is found, an empty array is returned.

Example

We want to get the parent groups of the "john" user containing the "admin" string at all levels:

var theUser = directory.user("john"); // get the user
var arrGrps = theUser.filterParents("@admin", "allLevels"); // filter group names containing "admin"

getParents()

Array getParents([Boolean | String level])

Parameter Type Description
level Boolean, String true or "firstLevel" = get only first‐level groups,

false or "allLevels" or omitted = get parent groups at all levels (default)

Returns Array Array of groups to which the user belongs

Description

The getParents() method returns an array of the groups to which either User or Group belongs.
Groups can be nested to create a hierarchy of inherited permissions in Wakanda.
By default, if you omit the level parameter or if you pass false or "allLevels" in this parameter, the method returns all the parent groups of the
Group or User. First‐level groups (groups to which the Group or User is directly assigned) and parent groups of the parent groups at all levels are
included in this case. For more information about group hierarchy in Wakanda, please refer to the Users and Groups section.
If you pass true or "firstLevel" in the level parameter, only the groups to which the Group or User is directly assigned are returned. Higher level
groups are ignored.

putInto()

void putInto(String | Array groupList)

Parameter Type Description
groupList String, Array List or array of groups

Description

The putInto() method adds the User to the group(s) you passed in the groupList parameter. You add a user to a group to assign access rights in the
datastore. A user can be added to one or several groups.
Several syntaxes are accepted for the groupList parameter:

A string list of group names or IDs:

aUser.putInto("sales", "finance", "admin"); // list of group names
aUser.putInto("HDIKF56FD4XX...","SDFDFFD4XX...") // list of group IDs;

A list of Group objects:

var group1 = directory.group("finance");
var group2 = directory.addGroup("account");
 aUser.putInto(group1 , group1) // list of group objects

Note: You can mix group names, IDs, or references.

An array of groups, containing either strings, group references, or both:

var arDev= directory.filterGroups("dev"); //array of group names
aUser.putInto(arDev);

If you pass an invalid group name, ID, or reference in groupList, an error is generated.
If the User is already included in a destination group, Wakanda just ignores the call (no error is generated).

Example

In the following example, a group and a user are created. Then, the user is put in the new group as well as in two other existing groups:

http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://doc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html

var newUser = directory.addUser("john", "abc123" , "John DEACON");
var newGroup = directory.addGroup("Consulting"); // creates a new group
newUser.putInto("account" , "finance" , newGroup); // add the user to 3 groups

remove()

void remove()

Description

The remove() method removes the User or Group from the solution's Directory. The user or group reference is also removed from the groups to
which it was assigned.
Keep in mind that the reference will be removed from the solution's open directory, but the change will not be saved on disk until you call the
save() method on the directory.

removeFrom()

void removeFrom(String | Array groupList)

Parameter Type Description
groupList String, Array List or array of groups

Description

The removeFrom() method removes the User from the group(s) you passed in the groupList parameter. Once removed from a group, a user loses
all the access rights in the datastore defined by the group(s).
Several syntaxes are accepted for the groupList parameter:

A string list of group names or IDs:

aUser.removeFrom("sales", "finance", "admin"); // list of group names
aUser.removeFrom("HDIKF56FD4XX...","SDFDFFD4XX...") // list of group IDs;

A list of Group objects:

var group1 = directory.group("finance");
var group2 = directory.group("account");
 aUser.removeFrom(group1 , group2) // list of group objects

Note: You can mix group names, IDs, or references.

An array of groups, containing either strings, group references or both:

var arDev= directory.filterGroups("dev"); //array of groups names
aUser.removeFrom(arDev);

If you pass an invalid group name, ID, or reference in groupList, an error is generated.
If the User was not included in one of the groups in groupList, Wakanda just ignores it (no error is generated).
Keep in mind that the User will be removed from the solution's open directory, but the change will not be saved on disk until you call the save()
method on the directory.

setPassword()

void setPassword(String password)

Parameter Type Description
password String New user password

Description

The setPassword() method allows you to change the password for the User.
In password, pass the new password for the user. Remember that passwords are case‐sensitive.
Keep in mind that the password will be set in the solution's directory, but the change will not be saved to disk until you call the save() method for
the directory.

http://doc.wakanda.org/Users-and-Groups/Directory/save.301-731734.en.html
http://doc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://doc.wakanda.org/Users-and-Groups/Directory/save.301-731734.en.html

