MIME

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that was originally designed to extends
the format of email to support:

e Text and header information in character sets other than ASCII,
e Non-text attachments
e Message bodies with multiple parts

However, MIME's use has grown beyond describing the content of email to describe content type in general in
Web applications. For more information, please refer to the MIME page definition on Wikipedia.

A MIME message is defined through several headers, such as "content-type", that indicates the media type of
the message or the message part. These information are necessary for the server to interpret the incoming
data.

In Wakanda, MIME features are used in the following areas:

e HTTP Request Handlers,
e \WAF-Mail CommonJS module.

Note: For information about Wakanda Server built-in MIME file type support, please refer to the Mime Types
Support section.

MIMEMessage

A MIMEMessage object contains MIME formated data, such as a multiparts form.
In Wakanda, MIMEMessage objects are available:

e through the parts property of an HTTPRequest. These objects gives access to the list of uploaded parts
from an HTTP client in the context of a multipart form.
e through the getMIMEMessage() method of the MIMEWTriter class.

count
Description

The count property returns the total number of parts contained in the multipart message.
In case of a form uploaded by a HTTP client, it is the number of parts uploaded by the client.

encoding
Description
The encoding property returns the encoding used for the request parts.
boundary
Description

The boundary property returns the boundary tag value used to delimit the parts in the multipart MIME
message.

[n]

Description

The [n] property gives access to the nth part of the MIMEMessage. This part is an object of the
MIMEMessagePart class for which you have properties and a method.

length
Description

The length property returns the total number of parts contained in the multipart message.
In case of a form uploaded by a HTTP client, it is the number of parts uploaded by the client.

toBlob()

Blob toBlob([String mimeType])

Parameter Type Description
mimeType String Type of the MIME message or "application/octet-stream"” if omitted
Returns Blob MIME message as Blob

Description

The toBlob() method returns the MIME message as a Blob object.

In the optional mimeType parameter, you can pass a lower case string representing the media type of the
MIME message (see RFC2046). By default if you omit this parameter, the Blob media type is "application/octet-
stream”.

Pay attention to the size of manipulated objects since the method creates in memory a copy of the MIME
message. An error is thrown if there is not enough memory available to execute the operation.

toBuffer()

void toBuffer()

Description

The toBuffer() method returns the MIME message as a Buffer object.

MIMEMessagePart

MIMEMessagePart objects are the individual parts of a multipart message (HTTPRequest or Mail Instances).
These objects are available through the following syntax:

message .messageParts[n]

... where n is the part number of the MIME message.
name
Description
The name property returns the name of the input field used for the POST of the binary data.
fileName
Description
The fileName property returns the name of the uploaded file.
mediaType
Description
The mediaType property returns the value of the part's "content-type" field.
size
Description
The size property returns the size of the body part in bytes.
asText
Description

The asText property returns the body of the part as a Text value. If the body contents do not match the String
type, an Undefined value is returned.

asPicture
Description

The asPicture property returns the body of the part as an Image value if possible. If the body contents do not
match the image type, an Undefined value is returned.

asBlob

Description

The asBlob property returns the body of the part as a BLOB value regardless of the actual data type in the
body (text, image, or any other data type).

save()

void save(String filePath [, Boolean overWrite])

Parameter Type Description

filePath String Path of the destination file
overWrite Boolean true = overwrite the destination file if it already exists

Description

The save() method saves the body of the part in the file whose path is passed in filePath.

If filePath describes a full path including a filename, the given name is used for the file. Otherwise, if filePath
only describes a folder path, the original filename (returned by the name property) is used.

If the overWrite parameter value is set to true, the destination file is replaced if it already exists. If it is set
to false or is omitted, the save() action is ignored if the destination file already exists.

Example

The following requestHandler function displays the parts posted by a simplified HTML form:

function displayFormContent (request, response)

{ -
var 1i;
var result;
result = "request.parts.count: " + request.parts.count;
result = result + "\nrequest.parts.encoding: " + request.parts.encoding;
result = result + "\nrequest.parts.boundary: " + request.parts.boundary;
result = result + "\n--—— - s
for (i = 0; 1 < request.parts.count; ++i) {
result = result + "\nrequest.parts[® + i1 +"].name: " + request.parts[i].ne¢
result = result + "\nrequest.parts[® + i1 + "].FfileName: " + request.parts]
result = result + "\nrequest.parts[® + i1 + "].mediaType: " + request.parts
result = result + "\nrequest.parts[” + i1 + "].size: " + request.parts[i]-¢
result = result + "\nrequest.parts[® + i + "].asText: " + request._parts[i’
result = result + *"\n--———-——--——----—---—— "
request.parts[i].save("e:/Data/", true);
}
return result;
}

The HTML form appears as shown below:

Browse...

[Submit][Clear l

Here is the HTML form code:

<form method="post"” action="/displayFormContent” enctype="multipart/form-data’>
<p><input type="Ffile" name="fileBlobl" size="25"></p>

<p><input type="Ffile" name="fileBlob2" size="25"></p>

<p><input type="submit" value="'Submit'"><input type="reset” value="Clear'></p>
</form>

MIMEWTriter

The MIMEWTriter class allows you to create and build new MIME objects that you can convert to regular
MIMEMessage objects using the getMIMEMessage() method.

addPart()

void addPart(String | Blob | Image part , String name [, String mimeType])

Parameter Type Description

part String, Blob, Image Part to add to the message

name String Part name

mimeType String Media type of the part
Description

The addPart() method adds a new part to the MIME message being written.

Pass in part the MIME part you want to add to the MIME message. Currently, you can only pass objects of the
text, blob or image type.

Pass in the name parameter the name for the part. In SMTP client applications, this name will be proposed to
save the part on disk. Pass an empty string if you do not want to give a name to the part.

Pass the MIME media type of the part in mimeType.

e |f you passed a string in part and mimeType is omitted, "text/plain” will be used as a default value.

e |f you passed an Image in part and mimeType is omitted, "image/xyz" (for example "image/png") will be
used as a default value.

e Otherwise, if mimeType is omitted, "application/octet-stream” will be used as a default value.

By default, images will be encoded in base64.
Example

With this basic handler function, your can return a multipart message in a Blob:

function testMIME(request, response) {
var mimeWriter = new MIMEWriter(); // creates the message
var photo = loadlmage(*'c:/temp/Tulips.jpg™);
mimeWriter.addPart (*'Look at these beautiful Fflowers\r\n", ", “text/plain®);
mimeWriter.addPart (photo, ', "image/jpeg”);
var mimeMessage = mimeWriter.getMIMEMessage();
var blob = mimeMessage.toBlob ("text/plain®);

response.headers.CONTENT_TYPE = "text/plain”;

return blob;

}

The returned blob looks like:

—--A3BA45AE53BB1C4ABFFI9F531A377156D
Content-Type: text/plain; name="lenoml"
Content-Transfer-Encoding: 8bit

Look at these beautiful flowers
--A3BA45AE53BB1C4ABFFOF531A377156D

Content-Type: image/png;image/jpeg;image/gif; name="lenom2"
Content-Disposition: attachment; filename="lenom2"
Content-Transfer-Encoding: base64

/93 /4AAQSkZIRgABAgGEAYABgAAD/7gAOQWR (... base64 encoding)

getMIMEBoundary()

String getMIMEBoundary()

Returns String Boundary used to delimit MIME parts

Description

The getMIMEBoundary() method returns the boundary string used to delimit each MIME message part.
This method is useful to set an appropriate Content-type value for the messages.

getMIMEMessage()

MIMEMessage getMIMEMessage()

Returns MIMEMessage Regular MIME message

Description

The getMIMEMessage() method converts the MIMEWTriter current object to a valid MIMEMessage object.
MIMEWTriter()

void MIMEWriter()

Description

The MIMEWTriter() method is the constructor of the dedicated class objects of the MIMEWTriter type. It allows
you to create new empty MIME messages objects on the server, that you can convert to regular multipart
MIMEMessage objects using the getMIMEMessage() method.

Example

To build a basic message:

function myMIME(request, response) {
var mimeWriter = new MIMEWriter(); // creates the message
mimeWriter.addPart ('Part 1, ", “text/plain®);
mimeWriter.addPart ('Part 2, ", “text/plain®);
var mimeMessage = mimeWriter.getMIMEMessage();
var blob = mimeMessage.toBlob ("text/plain®);
response.headers.CONTENT_TYPE = "text/plain”;

return blob;

}

	MIME API
	MIMEMessage
	count
	encoding
	boundary
	[n]
	length
	toBlob()
	toBuffer()

	MIMEMessagePart
	name
	fileName
	mediaType
	size
	asText
	asPicture
	asBlob
	save()

	MIMEWriter
	addPart()
	getMIMEBoundary()
	getMIMEMessage()
	MIMEWriter()

