
Wakanda Studio Extensions API

Creating a Wakanda Studio Extension

Do you want to create a Wakanda Studio extension in just a couple of minutes? Go to the My First Extension chapter.

What is a Wakanda Studio Extension?

Wakanda Studio Extensions are programs that can add new features to Wakanda Studio. For example, you could create a Wakanda Studio
extension to insert a set of predefined comments at the beginning of a JavaScript file.

You write an extension using standard Web technologies, such as JavaScript, HTML, and CSS. Once you have developed a Wakanda Studio
extension, you can share it with the Wakanda developer community. Our Wakanda development team has developed a few pre‐installed
extensions, such as "Beautifier" that you can use in the Code Editor to "beautify" your JavaScript code.

Extensions can be added to Wakanda Studio's main toolbar as well as from certain contextual menus in the Solution Explorer.

Where to add extensions?

A Wakanda Studio extension can be executed from:

Main toolbar
Contextual menus in the Solution Explorer (Tree view)
Code Editor toolbar

You can combine these locations and create any feature you need:

a single extension can provide several buttons and/or menu commands in one or several areas
a single feature can be associated to a button and a menu command

How to use this manual?

To create an extension in just a couple of minutes, refer to My First Extension.
To install an extension in Wakanda Studio, refer to Installing Extensions.
To understand how to write an extension, refer to Getting started.
To access the detailed reference documentation for creating a Wakanda Studio extension, refer to Creating Extensions and the APIs.

Disabling installed extensions

If you want to disable any of the extensions you installed into Wakanda Studio, you can do so by holding down the Shift key while Wakanda
Studio is being launched.

To enable them again, you just need to relaunch Wakanda Studio without holding down the Shift key.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/My-First-Extension.200-952159.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/My-First-Extension.200-952159.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Installing-Extensions.200-1041277.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Getting-started.200-874921.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions.200-872851.en.html

My First Extension

Here are the instructions to make your first Wakanda extension in just a couple of minutes by following these seven steps:

1. Download the Extension Template from our server and unzip it in the Extensions folder:
On Windows: {Disk}:\Users\{User name}\Documents\Wakanda\Extensions\
On OS X: /Users/{User name}/Documents/Wakanda/Extensions/

For more information, refer to the Installing Extensions section.

2. Open manifest.json in a text editor and define your extension name by replacing YOUR_EXTENSION_NAME.

3. Replace YOUR_EXTENSION_DESCRIPTION with a brief description of your extension.

4. Define your extension action name by replacing YOUR_ACTION in manifest.json.

5. Replace YOUR_ACTION_TITLE in manifest.json with an easy‐to‐understand title.

6. Open index.js in a code editor and replace YOUR_ACTION to rename the action.

7. Write the function body in index.js to define your action.

Voilà! Restart your Wakanda Studio and you will see your first extension appear in the main toolbar. You can place your extension icon/menu
in other places ‐‐ in manifest.json, just replace "studioToolbar" with another valid value (please refer to the senders paragraph).

A good example illustrates the whole picture better than detailed documentation. You can check the Wakanda Studio Extension Demo to learn
how to make certain commands more complex.

However, knowledge of Wakanda Studio Extension System is required if you want to accomplish sophisticated extensions. Check the Wakanda
Studio Extension online documentation for more detailed information.

You can use the Wakanda Studio Extension development forum for any technical questions/answers and for the announcement your new
extension.

ftp://ftp.wakanda.org/Documentation/current/Material/ExtensionTemplate.zip
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Installing-Extensions.200-1041277.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html#889358
http://doc.wakanda.org/Wakanda-Studio/help/Title/en/page2974.html
http://forum.wakanda.org/forumdisplay.php?27-Studio-Extensions

Installing Extensions (v1‐7)

Installing Extensions

A Wakanda Studio Extension is a set of files grouped in a single folder. To install the extension in Wakanda Studio, you just need to copy your
extension's folder into the Extensions folder depending on your OS:

On Windows: %userprofile%\Documents\Wakanda\Extensions\
For example: C:\John\Documents\Wakanda\Extensions\

On OS X: $HOME/Documents/Wakanda/Extensions/
For example: /Users/John/Documents/Wakanda/Extensions/

Extensions will be available for any Wakanda Studio application running on the machine in the user's session, including subsequent updates.
This location does not need require any specific access rights.

Compatibility Note

In previous releases of Wakanda, the Extensions folder could be installed:

in the user data folder: this location is not supported anymore: if you want to benefit from your previous custom extensions in Wakanda
v8 and higher, you need to move them manually to the new location.
in the Wakanda Studio application folder: this location is still supported (essentially for built‐in Wakanda extensions) but is not
recommended for custom extensions.

Add‐ons Extension

You can also use the Add‐ons to search for a custom extension and install it directly into Wakanda.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions/Add-ons.300-1049882.en.html

Getting started

As a first step to discover how to create an extension to the Wakanda Studio, we will write a very classic and basic example: adding a button to
the code editor toolbar that displays "Hello, World!".

1. Using any text editor (for example the Wakanda Studio code editor), create a new file named manifest.json and write the following
code:

{
 "extension":
 {
 "name": "Hello World",
 "version": "1.0.0",
 "description": "Hello World Demo for Wakanda Extensions",
 "icon": "HelloWorld.png",
 "senders": [
 {
 "location": "codeEditorToolbar",
 "icon": "HelloWorld.png",
 "actionName": "say_hello"
 }
],
 "actions": [
 {
 "name": "say_hello",
 "title": "hello"
 }
],
 "lifetime": "action_lifetime"
 }
}

This code describes our extension. For more information on how to write the manifest.json file, please refer to the Configuring the
manifest.json file section.

2. Create another file named index.js and write the following code:

exports.handleMessage = function handleMessage(message) {
 if(message.action == "say_hello")
 studio.alert("Hello World!");
 };

This file will contain the action(s) to execute and the unique entry point of the extension. For this tutorial, we write the basic contents
of the file, but it is generally much faster to use a "template" index.js file and add your own actions.
For more information on how to write the index.js file, please refer to the Configuring the index.js file section.

3. Create a new folder, name it for example "Hello World", and save your manifest.json and index.js files in that folder. Add also a picture
button file named "HelloWorld.png" (you can download a little icon here).

4. Copy the "Hello World" folder in the Wakanda Studio Extensions folder, as described in the Installing Extensions section.
5. Relaunch Wakanda Studio if it was already opened and load any file in the Code editor.

You should see the new button: click on the button, that's it!

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-indexjs-file.300-874909.en.html
ftp://ftp.wakanda.org/Documentation/current/Material/HelloWorld.png
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Installing-Extensions.200-1041277.en.html

Creating Extensions

A Walanda Studio extension is defined through two mandatory files:

manifest.json: declares the actions and their location in the Wakanda studio interface.
Objects to write in this file are detailed in the Configuring the manifest.json file section.
index.js: contains the code to execute in response to actions. The API: Studio is provided for extensions to communicate with Wakanda
Studio internal components (for example, the JavaScript Editor).
This file is described in the Configuring the index.js file section.

An extension can use a unlimited number of additional files (HTML, pictures, scripts...). All the extension files must be gathered in a single
folder.

Configuring the manifest.json file

The manifest.json file is one of the mandatory pieces of a Wakanda Studio extension: it describes the extension and declares the actions and
their locations in the toolbars and contextual menus available (see Where to add extensions?).
In this file, you can define the extension name and properties, the name of each action and the locations where Wakanda Studio should display
these action commands. A single extension can add several menu items and buttons in different locations.

The manifest.json file is a JSON format file; it only handles strings.

extension

"extension" is the main object of the manifest.json file. It contains up to 9 objects, described below:

name
version
description
icon
actions
senders
editors (optional)
lifetime
compatibleBuildVersion (optional)

name

"name" contains the extension name. Example:

"name": "Hello World"

version

"version" contains the extension version. Example:

"version": "1.2.1"

description

"description" provides a short description of the extension. Example:

"description": "My Great Wakanda Studio Extension"

icon

"icon" contains the path of the default icon file (relative to the extension's folder).
This icon will be used if a single button is defined by the extension. In case of multiple buttons, individual icons can be defined separately
through the "senders" object.

Example:

"icon": "myIcon.png"

actions

"actions" contains the action name(s), title(s) and optional elements, as described below:

Object Mandatory Type Description
name yes string Designates the action. Must be unique in "extension"
title yes string Default title for the action (i.e. the item label if the extension is a menu item)
targets no array of

target
objects

Defines the type of file where the action could be proposed (for example, .js or .html files). If omitted,
the action can be available for each type of file. Can contain the following objects:
uti Uniform Type Identifier
mimeType to be implemented
fileExtension to be implemented

trigger no array of
event
objects

An event object contains the "event" property. When an action subscribes to a studio event, then this
action is triggered by this event and sent to the handleMessage Function of the index.js file. Possible
values are:
fromSender actions are triggered by the Prototyper, i.e. buttons and

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio.201-872856.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-indexjs-file.300-874909.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Wakanda-Studio-Extensions-API.100-872838.en.html#874787
http://en.wikipedia.org/wiki/Uniform_Type_Identifier
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-indexjs-file.300-874909.en.html#901531

menu items
onSave the current edited file is saved. The saved file will be the

first element of message.source.data.
message.source.name can be "fromCodeEditor",
"fromWebDesigner", "fromSettingsView",
"fromDirectoryView", "fromModelView", "fromShortcutView"
or "fromExtensionSystem".

onFileDirty the current file has been altered. The modified file will be
the first element of message.source.data.
message.source.name can be "fromCodeEditor",
"fromWebDesigner", "fromSettingsView",
"fromDirectoryView", "fromModelView", "fromShortcutView"
or "fromExtensionSystem".

onFilesAddedInSolution a file was added to the solution explorer area.
message.source.name will be "fromSolutionExplorer" and
message.source.data will contain each added File.

onFilesRemovedFromSolution a file was removed from the solution explorer area.
message.source.name will be "fromSolutionExplorer" and
message.source.data will contain each removed File.

onFolderCollapsed message.source.name will be "fromSolutionExplorer" and
message.source.data will contain each operation Folder.

onFolderExpanded message.source.name will be "fromSolutionExplorer" and
message.source.data will contain each operation Folder.

onSolutionCreated a new solution is created. message.source.name will be
"fromSolutionExplorer" and message.source.data will
contain the created Folder.

onProjectCreated a new project is created. message.source.name will be
"fromSolutionExplorer" and message.source.data will
contain the created project File.

onSolutionOpened an existing solution is opened. message.source.name will be
"fromSolutionExplorer".

onSolutionBeforeClosing the solution is about to be closed but context is still alive.
message.source.name will be "fromSolutionExplorer".

onSolutionClosed the solution is closed. message.source.name will be
"fromSolutionExplorer".

onStudioStart Wakanda Studio in started. message.source.name will be
"fromStudio".

onFileRenamed a file name is modified in Wakanda Studio. The
message.source.name will be "fromSolutionExplorer". The
original full file name (index 0) and the new full file name
(index 1) can be read from the message.source.data array
as File objects.

onFilesMovedInSolution(*) file(s) are moved within the solution explorer.
message.source.name will be "fromSolutionExplorer".
message.source.data will contain the destination Folder as
the first element and the source path string of each moved
item (file or folder) as the following elements.

onFileBeforeOpened Wakanda studio is about to open a file in an editor. The file
will be the first element of message.source.data.

onFileModified files are modified both ouside and inside of Wakanda
Studio.

shortcut no array of
shortcut
objects

Each action may have its shortcut defined in this field. If the shortcuts defined are in conflict with the
Studio's shortcuts, then priority will be given to the Studio. Possible values are:
shortcutKey Possible values: "yes" and "no". Ctrl key for Win, Command key for Mac
alternateKey Possible values: "yes" and "no".
shiftKey Possible values: "yes" and "no".
key Possible values: "A"‐"Z", "home", etc.

Note: If you modify your shortcut during your development, you have to quit Wakanda Studio, remove
%APPDATA%\Wakanda Studio\waShortcuts.json (Windows) or $Home/Library/Application
Support/Wakanda Studio/waShortcuts.json on OS X then restart Wakanda Studio in order your shortcut
modification to take effect.

(*) Moving files by drag and drop in a solution will trigger the following three notifications, in the order shown here:
1. onFilesMovedInSolution
2. onFilesAddedInSolution
3. onFilesRemovedFromSolution
However, if an extension action only subscribes to onFilesMovedInSolution, then only this action will be triggered by onFilesMovedInSolution.
The result (source files moved) is not verified ‐ move operations may fail ‐ so it is the extension author's responsibility to check the
presence/absence of files in both source and destination folders.

Example :

 "actions": [

 {"name": "js_if",
 "title": "if-else",
 "targets": [
 { "uti": "com.netscape.javascript-source" }
],
 "shortcut": {
 "shortcutKey" : "yes",
 "alternateKey" : "yes",
 "shiftKey" : "no",
 "key" : "i"
 }
 },
],

senders

"senders" defines the location(s) of action commands, i.e. the interface objects that will generate the actions.
This property is an array of sender objects. Each sender object contains the following properties:

Object Mandatory Type Description
location yes string Indicates where to make the extension available. You can pass one or

more values. Available strings are:
 studioToolbar
 solutionExplorerTreeViewContextMenu
 codeEditorToolbar

actionName yes if no "menu" object array is passed string Name of an action defined in the name property of the "actions"
object. Use this first level actionName when it is available through a
single button. Use "menu" property instead if you want to define a
menu. "menu" and "actionName" cannot both be present.

title no string Toobar icon or menu item title. If omitted, the title property of the
"actions" object will be used as default value.

menu yes when the "location" value is
solutionExplorerTreeViewContextMenu,
or if no "actionName" object is passed

array
of
menu
item
objects

Array of menu item objects, which can be repeated recursively down
until the 2nd level. Use this property if you want to define a menu. Use
the first level "actionName" instead if you want to define a single
button. "menu" and "actionName" cannot be both present. Each "menu
item" object contains the following properties:

actionName Mandatory if no "menu"
sub‐object array is
passed. "menu" and
"actionName" cannot both
be present.

Name of an
action defined in
the name
property of the
"actions" object

menu Mandatory if no
"actionName" sub‐object
array is passed. "menu"
and "actionName" cannot
both be present.

Title of a menu

title Mandatory if a "menu"
sub‐object array is passed

Menu item title.
If omitted, the
title property of
the "action"
object is used

A menu array can contain an object separator, which has the following
syntax: "separator":{}

icon yes for buttons (i.e. first‐level
actionName and location in
studioToolbar or codeEditorToolbar)

string Path of the picture file used as icon for the button (relative to the
extension's folder).

tips no string Additional information to display when the cursor moves over the
button. Used only for buttons (i.e. first‐level actionName and location
in studioToolbar or codeEditorToolbar).

alternateTitle no string Title to display if the action's alternative state is turned on. Used only
for buttons (i.e. first‐level actionName and location in studioToolbar
or codeEditorToolbar).

alternateIcon no string Name of the icon file to display if the action's alternative state is
turned on. Used only for buttons (i.e. first‐level actionName and
location in studioToolbar or codeEditorToolbar).

alternateTips no string Tip to display if the action's alternative state is turned on. Used only
for buttons (i.e. first‐level actionName and location in studioToolbar
or codeEditorToolbar).

Example of sender in the code editor toolbar:

"senders": [
 {
 "location": "codeEditorToolbar",
 "tips": "Check Javascript Error"
 "menu":
 [

 {
 "actionName": "checkError"
 },
 {
 "actionName": "cleanErrors"
 }
]
 },
],

Using "editors" allows you to replace Wakanda Studio's default editor with an extension that is a custom document editor. You can set file
extensions that are handled by this custom editor. For example, an extension could handle "CSS" files. In this case, when the user opens or
double‐clicks on a CSS file in the Solution explorer, the CSS file path is passed to the extension, which can open a tab and load any user
interface. The extension will manage the detection of any modification and saving, in order to represent the dirty status and save the file in
question. Optionally, it can also handle find/replace features. Note that the "lifetime" must be set to "application_lifetime"; otherwise, the
extension will be ignored.

Object Mandatory Type Description
fileExtensions yes array

of
strings

Array containing the list of supported file type extensions

editor yes string Relative path of the HTML file that contains callback functions (loaded in the Web zone).
operations Callbacks to call for each operation. All these callback functions must be defined in the HTML file

that you set in "editor", or in any JS file which will be loaded by your HTML file, but NOT in index.js.
load.callback (mandatory) Name of load callback function. When a file

is launched and its type is registered in "fileExtensions",
the Studio will load the HTML file set in "editor". As soon
as all the components are ready on the Web zone side,
you must call studio.editor.loaded() to trigger the call
to the load callback function with the full file path as
argument. You can then process the argument however
you like.

save.callback (mandatory) Name of save callback function. When the
user triggers a Save command or types "Ctrl+S", this
function will be called by the Studio. You can use
studio.editor.setDirty() to set the current document as
dirty or clean.

getText.callback (optional) Name of getText callback function. When a
"find in files" action is triggered in the Studio, the getText
function will be called if any document is opened by the
extension. Your getText callback function should return
the contents of the opened document as a string type.
Note that you must remove all the \n characters before
passing these contents to the Studio in order to get the
right results in selectByTextOffset.

selectByTextOffset.callback (optional) Name of selectByTextOffset callback function.
When the user clicks on a result to view the results found,
the Studio will switch to the corresponding document,
and the selectByTextOffset callback function will be
called, with startOffset and endOffset as arguments. You
must then use the 2 offsets to select the results in your
extension editor.

getSelectedText.callback (optional) Name of getSelectedText callback function. If a
document of the extension editor is opened when the user
clicks on a "replace" button, the Studio will select the
occurrences to replace and the getSelectedText callback
function will be called. You should just return the
selected string in your callback function.

insertText.callback (optional) Name of insertText callback function. Text to
be inserted is passed as an argument to this callback
function. You must replace the selected text by the text
to be inserted in the argument.

Example:

"editors":[
 {
 "fileExtensions": ["html", "css"],
 "editor": "index.html",
 "operations" : {
 "load" : {
 "callback" : "IDE.loadFile"
 },
 "save" : {
 "callback" : "IDE.shortcut_plugins_save_save"
 },
 "getText" : {

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Editor/loaded.301-1160152.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Editor/setDirty.301-1160158.en.html

 "callback" : "IDE.getText"
 },
 "selectByTextOffset" : {
 "callback" : "IDE.selectByTextOffset"
 },
 "getSelectedText" : {
 "callback" : "IDE.getSelectedText"
 },
 "insertText" : {
 "callback" : "IDE.insertText"
 }
 }
 }
],

lifetime

'lifetime" allows you to define the lifetime of the JavaScript context. Two values are available:

application_lifetime Keep JavaScript context alive among the actions
action_lifetime A new JavaScript context is created for each action and released after execution

Using "application_lifetime" allows the writing and reading of global variables in the unique context that is shared by all the action calls in an
extension. Each extension will have its own context.

Example:

"lifetime": "application_lifetime"

compatibleBuildVersion

"compatibleBuildVersion" indicates the lowest Wakanda Studio build version compatible with the extension. Note that it's a build version, not a
major version. The build version can be found in the "About Wakanda Studio" dialog box.

If the Wakanda Studio build version is smaller than the indicated version, the extension will not be loaded. The extension will always be loaded
if this property is omitted. It must be a digital value (not a string type).

Example:

"compatibleBuildVersion": 105605

Configuring the index.js file

The index.js file is the entry point of an extension for Wakanda Studio. All features (actions) provided by the extension are defined in this
JavaScript file. You can use:

standard JavaScript code, including require() statements,
a specific API, detailed in this manual.
All the Wakanda Studio components are available through this API in index.js.

handleMessage Function

The main entry function in index.js is named handleMessage. All the actions you declared in manifest.json will be passed to this callback
function and should be processed here.

The handleMessage should be set as the handleMessage property of an exports object.

The handleMessage function receives a message object as parameter. The message object has three properties, "action", "event" and "source":

message.action contains the name of the action declared in manifest.json (for example, "js‐if").
message.event indicates the source of triggered message object. It can contain:

"fromSender" if the message is triggered by the Wakanda Studio interface (ie. user clicks on a button or menu item).
"onSave", "onFileDirty", "onFilesAddedInSolution", "onFilesRemovedFromSolution", "onFolderCollapsed", "onFolderExpanded",
"onSolutionCreated", "onProjectCreated" or "onSolutionOpened" if the action is defined through a trigger and the user triggered the
action.
"fromExtension" if the message is triggered by another extension (see sendCommand()).

message.source contains an object with two properties, "name" and "data".
"name" value is the event source name (string). Possible values are:

fromSender: the message is triggered by the Prototyper (ie. user clicks on a button or menu item).
fromExtension: the message is triggered by another extension (see sendCommand()).
fromCodeEditor: the message is triggered by the JavaScript Editor.
fromWebDesigner: the message is triggered by the Web Designer.
fromSolutionExplorer: the message is triggered by Solution Explorer.
fromSolutionList: the message is triggered by Solution List.
fromSolutionThumbnails: the message is triggered by Solution Thumbnails.

"data" is an array which can contain one or more element(s) of string, File or Folder type. It depends on the event.
For example, when the event is onFilesAddedInSolution, "data" is an array of File objects representing all files added to the
Solution Explorer.

Within this entry function, you will usually call any appropriate function depending on the message.action value.

Example

Here is a typical handleMessage function:

http://livedoc.wakanda.org/Global-Application/Application/require.301-664756.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/sendCommand.301-940830.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/sendCommand.301-940830.en.html

exports.handleMessage = function handleMessage(message) { // main entry point
 var actionName;
 actionName = message.action; // get the action name
 actions[actionName](message); // execute the actionName function
 // stored in the actions object
 // and pass the 'message' parameter as is
};

Using the Extension API

In the index.js file, you can use a dedicated set of API. This API gives access to the Wakanda Studio components and allows you to benefit from
all the features and capacities of the Studio.

Serveral API themes are available, for example API: Studio, API: Code Editor or API: Solution.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio.201-872856.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor.201-901574.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Solution.201-948085.en.html

_Tempo (not published)

ARGUMENT_AS_BASE64_STRING (optional) is a string in base64 that contains any arguments to be passed to the extension. Use this
parameter if the called action of the extension takes argument(s) such as a JavaScript object or a string. If the arguments are not
correctly encoded, they are simply ignored.

Example

You want your extension to be called with an object parameter containing, for example, a first name and a last name. You can write:

var person = {
 lastName : 'Smith',
 firstName: 'John'
};
var personJson = JSON.stringify(person);
var base64json = btoa(personJson); // btoa() is only available on webviews
studio.sendCommand('myExtensionFolderName.myCommandName.'+base64json);

On the extension side, you can have:

exports.handleMessage(message){
 if(message.event == 'myCommandName'){
 // person object is stored in message.params and is automatically converted back to a js object
 studio.alert(message.params.lastName); // Smith
 }
}

Note: btoa() is a native WebKit function available on WebViews and browsers but not on extension internals. Therefore if you want to use
_Tempo (not published) with parameters from one extension to another (inside the exports.handleMessage) you must include a
stringToBase64 function. An example is provided in the following discussion: http://stackoverflow.com/questions/246801/how‐can‐you‐
encode‐a‐string‐to‐base64‐in‐javascript?answertab=votes#tab‐top.

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/btoa
http://stackoverflow.com/questions/246801/how-can-you-encode-a-string-to-base64-in-javascript?answertab=votes#tab-top

API: Code Editor

Methods in this theme allows reading and modifying the text displayed in the Wakanda Studio Code Editor.

Methods support JavaScript, HTML, XML, and any source code displayed in the editor.

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

currentEditor.clearAnnotations()

void currentEditor.clearAnnotations()

Description

The currentEditor.clearAnnotations() method removes all warning symbols from the annotation bar of the open document.

This method will clear symbols added by any Wakanda extension using . However, it will not remove system warnings indicating, for example,
syntax errors.

currentEditor.getContent()

String currentEditor.getContent()

Returns String Contents of the edited document

Description

The currentEditor.getContent() method returns the whole content of the document currently displayed in the Code editor.

Example

You want to store temporarily a specific version of your code and be able to view it at any moment. You add two buttons to the code editor
associated with the "store_copy" and "show_copy" actions. In the index.js file, you can write:

actions.store_copy= function store_copy() {

 var content = studio.currentEditor.getContent(); // gets the current content
 studio.extension.currentDialog.setItem("codeCopy" , content); // put it in the storage
};

actions.show_copy= function show_copy() {

 var copied = studio.extension.currentDialog.getItem("codeCopy"); //read the storage
 studio.alert(copied); // show the contents of the codeCopy attribute
 };

currentEditor.getEditingFile()

File | Null currentEditor.getEditingFile()

Returns File, Null Edited document

Description

The currentEditor.getEditingFile() method returns a File object referencing the document currently opened in the Code editor.

If there is no current document in the Code editor (for example if the window in the foreground is not a Code editor window), the method
returns null.

Example

var docPath = studio.currentEditor.getEditingFile().path;
 // docPath returns, for example
 // 'C:/Wakanda Solutions/My Solution/MyProject/MyScript.js

currentEditor.getPath()

String currentEditor.getPath()

Returns String File path of the edited document

currentEditor.getSelectedText()

String | Null currentEditor.getSelectedText()

Returns String, Null Currently selected text

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html

Description

The currentEditor.getSelectedText() method returns the text selected in the document currently displayed in the Code editor. If nothing is
selected in the document, currentEditor.getSelectedText() returns Null.

currentEditor.getSelectionInfo()

Object currentEditor.getSelectionInfo()

Returns Object Definition of the selection in the document

Description

The currentEditor.getSelectionInfo() method returns information about the selection in the document currently displayed in the Code editor.

Information depends on the number of line(s) selected as well as the cursor position.

You must also consider the following specificities:

the Code editor line numbering starts at 1, although the currentEditor.getSelectionInfo() method line numbering starts at 0;
collapsed or expanded code structures need to be taken into account. This is the reason why the returned object contain different
properties for selected lines (includes all lines, whatever their expand/collapse status) and "visible" selected lines (counts a single line
for a collapsed block).

The method returns an object containing the following properties:

Property Type Description
firstLineIndex Number Index of starting selection line
firstVisibleLine Number Index of "visible" starting selection line
firstLineOffset Number Starting selection position in the first selection line
lastLineIndex Number Index of ending selection line
lastVisibleLine Number Index of "visible" ending selection line
lastLineOffset Number Position of the last selected character in the last selection line
isLeftToRightSection Boolean true if the selection direction is from left to right, false otherwise
offsetFromStartOfText Boolean Position of the first selected character from the beginning of text (0)
selectionLength Number Length of selection

Example

Considering the following selection in the code editor:

var selObj = studio.currentEditor.getSelectionInfo();
var s1 = selObj.firstLineIndex; // s1 contains 5
var s2 = selObj.firstVisibleLine; // s2 contains 5
var s3 = selObj.firstLineOffset; // s3 contains 10
var s4 = selObj.lastLineIndex; // s4 contains 18
var s5 = selObj.lastVisibleLine; // s5 contains 15
var s6 = selObj.lastLineOffset; // s6 contains 13
var s7 = selObj.offsetFromStartOfText; // s7 contains 61
var s8 = selObj.selectionLength; // s8 contains 251
var isLR = selObj.isLeftToRightSection // isLR contains true

currentEditor.insertText()

void currentEditor.insertText(String textToInsert)

Parameter Type Description

textToInsert String Text to insert in the open document

Description

The currentEditor.insertText() method inserts textToInsert into the document currently displayed in the Code editor, at the current cursor
position.

If text was selected in the document, it is replaced by textToInsert.

Example

You want to be able to insert the current date in your code. You add a button to the code editor associated with the "add_date" action. In the
index.js file, you can write:

actions.add_date= function add_date() {

 var vadate = new Date();
 studio.currentEditor.insertText(vadate);
};

currentEditor.saveCurrentEditedFile()

Boolean currentEditor.saveCurrentEditedFile()

Returns Boolean True if the file has been saved, false otherwise

Description

The currentEditor.saveCurrentEditedFile() method saves the current edited file on disk if it has been modified since the last save.

You can use this method to save a file automatically when it has been edited.

When you call this method, if the file has been modified since the last save, it is saved and the method returns true. If the file has not been
modified, it is not saved and the method returns false.

currentEditor.selectByLineIndex()

void currentEditor.selectByLineIndex(Number start, Number end, Number firstLineIndex, Number lastLineIndex, Boolean fromLeftToRight)

Parameter Type Description

start Number Start line offset
end Number End line offset
firstLineIndex Number Starting line index
lastLineIndex Number Ending line index
fromLeftToRight Boolean true for left‐to‐right selection, otherwise false

Description

The currentEditor.selectByLineIndex() method allows you to change the selection of text in the document currently displayed in the Code
editor using line index parameters, that is, without taking the collapsed/expanded status of lines into account. If you want to set the selection
of text with respect to the collapsed/expanded status of lines, you should consider using the currentEditor.selectByVisibleLine() method.

Pass in start, end, firstLineIndex, lastLineIndex and fromLeftToRight parameters the new selection definition. For more information about
these parameters, please refer to the currentEditor.getSelectionInfo() method description.

currentEditor.selectByVisibleLine()

void currentEditor.selectByVisibleLine(Number start, Number end, Number firstVisibleLineIndex, Number lastVisibleLineIndex, Boolean fromLeftToRight)

Parameter Type Description

start Number Start line offset
end Number End line offset
firstVisibleLineIndex Number Starting visible line index
lastVisibleLineIndex Number Ending visible line index
fromLeftToRight Boolean true for left‐to‐right selection, otherwise false

Description

The currentEditor.selectByVisibleLine() method allows you to change the selection of text in the document currently displayed in the Code
editor using visible line index parameters, that is, by taking the collapsed/expanded status of lines into acount. If you want to set the selection
of text without worrying about the collapsed/expanded status of lines, you should consider using the currentEditor.selectByLineIndex() or
currentEditor.selectFromStartOfText methods.

Pass in start, end, firstVisibleLineIndex, lastVisibleLineIndex and fromLeftToRight parameters the new selection definition. For more
information about these parameters, please refer to the currentEditor.getSelectionInfo() method description.

currentEditor.selectFromStartOfText

void currentEditor.selectFromStartOfText(Number offset, Number length, Boolean fromLeftToRight)

Parameter Type Description

offset Number Starting selection offset
length Number Selection length
fromLeftToRight Boolean true to select from left to right, false otherwise

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor/currentEditorselectByVisibleLine.301-947628.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor/currentEditorgetSelectionInfo.301-940267.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor/currentEditorselectByLineIndex.301-940546.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor/currentEditorselectFromStartOfText.301-947577.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Code-Editor/currentEditorgetSelectionInfo.301-940267.en.html

Description

The currentEditor.selectFromStartOfText method allows you to change the selection of text in the document currently displayed in the Code
editor by selecting the offset character to offset+length character. You can pass a negative value in length, so that the text before the offset
character will be selected. The offset character will be evaluated from the beginning of the text and includes collapsed blocks. If the new
selection overlaps a collapsed block, the block is automatically expanded.

Pass true in the fromLeftToRight parameter to select text from left to right, and false to select from right to left.

Example

Considering the following content:

If you execute the following code:

studio.currentEditor.selectFromStartOfText(45,200,true)

The new selection will be:

But, if you execute the following code:

studio.currentEditor.selectFromStartOfText(45,205,true)

The new selection will be:

In this case, there is no need to expand the block, it is entirely selected.

currentEditor.setAnnotation()

void currentEditor.setAnnotation(Number lineIndex, String errorMsg)

Parameter Type Description

lineIndex Number Line index where to add a warning symbol
errorMsg String Tip to display when the mouse hovers on the warning symbol

Description

The currentEditor.setAnnotation() method allows you to add a warning symbol in the vertical annotation bar at the lineIndex line in the open
document. Keep in mind that Wakanda's Code editor line numbering starts at 1, but JavaScript indexes document lines starting at 0.

Pass in errorMsg the message to display as tip when the mouse hovers on the set symbol.

Example

The following code:

studio.currentEditor.setAnnotation(81,"Use of a Wakanda reserved keyword");

... will add a warning symbol associated with a message in the open document:

currentEditor.setCaretPosition()

void currentEditor.setCaretPosition(Number offset)

Parameter Type Description

offset Number New position for the caret

Description

The currentEditor.setCaretPosition() method moves the caret (|) to the defined offset position in the document currently opened in the
Code editor.

The character position you pass in offset will be evaluated from the beginning of the text, including collapsed blocks. If the new caret position
is within a collapsed block, it is automatically expanded.

API: Editor

Methods in this theme allow synchronizing an external custom editor with the Wakanda Studio interface.

For more information about how to install a custom editor as a Wakanda extension, please refer to the Configuring the manifest.json file
section.

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

loaded()

void loaded()

Description

The loaded() method must be called after the end of the initialization sequence for the custom extension editor.

When a user opens a file whose handling has been delegated to the custom editor (in the manifest.json file), the editor is launched and may
need to open a tab, an interface, etc. This method allows the editor to notify Wakanda Studio that it is "ready" to handle the material. In
response, Wakanda Studio will pass to the editor the path of the file to edit.

Calling this method is mandatory; otherwise Wakanda Studio will not send any information to the custom extension.

Example

At the end of your init code, you can call loaded():

IDE.Core.onReady(function(){
 IDE.plugins.onPluginsLoaded(function(){
 IDE.plugins.activate("history");
 IDE.plugins.activate("save");
 IDE.plugins.events.emit("all_activated");
 studio.editor.loaded();
 });

setDirty()

void setDirty(Boolean dirtyStatus)

Parameter Type Description

dirtyStatus Boolean True to set the "dirty" status, False to remove the "dirty" status

Description

The setDirty() allows you to define the "dirty" status of the custom editor's page: pass true to set the status, or false to remove the status.

Basically, the "dirty" status is represented by a * symbol added next to the open file name in the Wakanda Studio's tab:

Not dirty:

Dirty:

This provides the user with a visual indication that the page contents have been altered since the last save and allows the custom editor to
synchronize its interface with Wakanda Studio.

After the edited document has been saved by your extension editor, call the following code to restore the initial status:

studio.editor.setDirty(false);

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html

API: Event

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.subscribeEvent()

void extension.subscribeEvent(String eventName, String actionName)

Parameter Type Description

eventName String Name of event to subscribe to
actionName String Name of function to be called for the event

Description

The extension.subscribeEvent() method allows your extension to subscribe dynamically to an event.

You can also subscribe to events using the actions.trigger objects in the manifest.json file (cf. Configuring the manifest.json file), but this
does not allow dynamic settings. Subscribing or unsubscribing on the fly may be better optimized.

In eventName, pass the name of the event to which you want to subscribe. Supported events are listed in the trigger table from the
Configuring the manifest.json file section. For example, "onSave" or "onFileRenamed" are valid event names.

In actionName, pass the name of the action (i.e., the function) that must be executed when eventName is triggered. You can add several
actions for the same event.

extension.unsubscribeEvent()

void extension.unsubscribeEvent(String eventName, String actionName)

Parameter Type Description

eventName String Name of event to unsubscribe from
actionName String Name of unsubscribed function

Description

The extension.unsubscribeEvent() method allows your extension to unsubscribe dynamically from an event.

You can also unsubscribe from events using the actions.trigger objects in the manifest.json file (cf. Configuring the manifest.json file), but
this does not allow dynamic settings. Subscribing or unsubscribing on the fly may be better optimized.

In eventName, pass the name of the event from which you want to unsubscribe. It may have been set using the actions.trigger object in the
manifest.json file (cf. Configuring the manifest.json file) or the extension.subscribeEvent() method.
Supported events are listed in the trigger table from the Configuring the manifest.json file section. For example, "onSave" or "onFileRenamed"
are valid event names.

In actionName, pass the name of the action (i.e., the function) that must be unsubscribed from the eventName event.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Event/extensionsubscribeEvent.301-1067014.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Creating-Extensions/Configuring-the-manifestjson-file.300-874904.en.html

API: Extension

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.getFolder()

Folder extension.getFolder()

Returns Folder Extension folder

Description

The extension.getFolder() method returns a Folder object referencing the folder of the extension.

Example

You can call this code in the index.js file to get the extension folder path:

var fold = studio.extension.getFolder().path;

If your extension is installed in the user documents folder as described in the Installing Extensions section, the fold string will contain (on
Windows):

C:/Users/Arnaud/Documents/Wakanda/Extensions/Hello World Extension/

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/Installing-Extensions.200-1041277.en.html

API: GUI

Each extension action associated to a button has two graphical properties:
alternative property (Boolean): the extension can change button icon, button title, or button tips by changing the associated
action's alternative state.
enabled property (Boolean): the extension can make button enabled or disabled by setting enabled state to true or false
respectively.

Each extension action associated with a menu item has two graphical properties as well:
checked property (Boolean): the extension can check/uncheck a menu item by changing the associated action's checked state to
true or false.
enabled property (Boolean): the extension can show or hide the item by setting the enabled state to true or false respectively.

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

checkMenuItem()

void checkMenuItem(String actionName, Boolean isChecked)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isChecked Boolean True to check the menu item, false otherwise

Description

The checkMenuItem() method allows you to set the checked state of the menu item associated to the actionName.

Pass true in the isChecked parameter to check the menu item button and false to uncheck it.

hideProgressBarOnStatusBar()

void hideProgressBarOnStatusBar()

Description

The hideProgressBarOnStatusBar() method allows you to hide the animated progress bar in the Wakanda Studio status bar.

You can add an animated progress bar using the showProgressBarOnStatusBar() method. By default, the progress bar is not displayed.

If the progress bar is not already displayed, this method does nothing.

Progress bar displayed

Progress bar hidden

Example

If you execute the following code:

studio.showProgressBarOnStatusBar("Processing data..."); //displays a bar and a message
... //custom processing
studio.hideProgressBarOnStatusBar();

During processing, the Wakanda Studio status bar will contain:

isActionAlternated()

Boolean isActionAlternated(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the alternated button action state is on, false otherwise

Description

The isActionAlternated() method returns true if the alternated state for the actionName of a button is on.

The method returns false if the alternated state is off.

isActionEnabled()

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-GUI/showProgressBarOnStatusBar.301-996559.en.html

Boolean isActionEnabled(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the enabled button action state is on, false otherwise

Description

The isActionEnabled() method returns true if the enabled state for the actionName of a button is on.

The method returns false if the enabled state is off.

isMenuItemChecked()

Boolean isMenuItemChecked(String actionName)

Parameter Type Description

actionName String actionName defined in the manifest.json file

Returns Boolean True if the actionName menu item is checked, false otherwise

Description

The isMenuItemChecked() method returns true if the menu item associated to the actionName is checked.

The method returns false if the menu item is not checked.

setActionAlternated()

void setActionAlternated(String actionName, Boolean isAlternated)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isAlternated Boolean True to set the alternate state of the button, false otherwise

Description

The setActionAlternated() method allows you to set the alternate state of the button associated to the actionName.

Pass true in the isAlternated parameter to set the alternated state and false to remove it.

setActionEnabled()

void setActionEnabled(String actionName, Boolean isEnabled)

Parameter Type Description

actionName String actionName defined in the manifest.json file
isEnabled Boolean True to enable the button action, false otherwise

Description

The setActionEnabled() method allows you to set the enabled state of the button associated to the actionName.

Pass true in the isEnabled parameter to enable the button and false to disable it.

showMessageOnStatusBar()

void showMessageOnStatusBar(String message [, String mode])

Parameter Type Description

message String Text to display
mode String Message mode: error, warning or normal

Description

The showMessageOnStatusBar() method displays a message in the Wakanda Studio status bar, next to the progress bar.

This feature allows you to display information to the user, for example while time‐consuming operations are being run.

The mode parameter allows you to assign a level of importance to the message. Basically, it changes the color of the displayed text. You can
pass one of the following strings:

"normal" (default if omitted): message is displayed with standard black color.
"warning": message is displayed with orange color.
"error": message is displayed with red color.

Example

If you execute the following statement:

studio.showMessageOnStatusBar("Waiting for server response...");

The Wakanda Studio status bar will display the message:

Example

If you execute the following statement:

studio.showMessageOnStatusBar("Unable to connect to server","error");

The Wakanda Studio status bar will display the message:

showProgressBarOnStatusBar()

void showProgressBarOnStatusBar([String message])

Parameter Type Description

message String Message to display with the status bar

Description

The showProgressBarOnStatusBar() method allows you to show an animated progress bar in the Wakanda Studio status bar and, optionally,
display a message in the bar.

An animated progress bar is used to symbolize a pending operation. It is optionally associated with a message parameter (see also
showMessageOnStatusBar() method).

By default, the progress bar is not displayed. When it is displayed, you can hide it using the hideProgressBarOnStatusBar() method.

Note: Do not forget to call hideProgressBarOnStatusBar() after the operation is finished, otherwise your showProgressBarOnStatusBar()
will block any other messages.

Example

If you execute the following code:

studio.showProgressBarOnStatusBar("Processing data..."); //displays a bar and a message
... //custom processing
studio.hideProgressBarOnStatusBar();

During processing, the Wakanda Studio status bar will contain:

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-GUI/showMessageOnStatusBar.301-996553.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-GUI/hideProgressBarOnStatusBar.301-996565.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-GUI/hideProgressBarOnStatusBar.301-996565.en.html

API: Preferences

This set of APIs allows the extension author to read or write extension settings, called preferences. A preference is a combination of a key and
a value. You can use two different sets of extension preferences: general preferences and solution preferences.

User preferences

User extension preferences are used by the Wakanda Studio application. They are shared by all solutions. General extension preferences are
saved in the following file (optional):

On Windows: {Disk}:\Users\{User name}\AppData\Roaming\Wakanda Studio\ExtensionPreferences\EXT_FOLDER_NAME\Preferences.json
On Mac OS: /Users/{User name}/Library/Application Support/Wakanda
Studio/ExtensionPreferences/EXT_FOLDER_NAME\Preferences.json

Solution extension settings

Solutions extension settings are set separately for each solution. They are designed to store solution‐relative parameters, such as specific
paths. Solution extension settings are saved in the following file (optional):

On Windows: {Disk}:\Users\{User name}\Documents\Wakanda\{solution name}\{solution name}
Solution\ExtensionSettings\EXT_FOLDER_NAME\Settings.json
On Mac OS: /Users/{User name}/Documents/Wakanda/{solution name}/{solution name}
Solution/ExtensionSettings/EXT_FOLDER_NAME/Settings.json

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

extension.deletePrefFile()

Boolean extension.deletePrefFile()

Returns Boolean True if the preference file was successfully deleted, false otherwise

Description

The extension.deletePrefFile() method removes the preference file from the disk. If the file was successfully deleted, the method returns
True, otherwise (for example, if the file is locked), it returns False.

extension.deleteSolutionSettingsFile()

Boolean extension.deleteSolutionSettingsFile()

Returns Boolean True if the solution settings file was successfully deleted, false otherwise

Description

The extension.deleteSolutionSettingsFile() method removes the solution settings file from the disk. If the file was successfully deleted, the
method returns True. Otherwise (for example, if the file is locked), it returns False.

Implementation Note (v4): This method was previously named deleteSolutionPrefFile().

extension.getPref()

String extension.getPref(String keyName)

Parameter Type Description

keyName String Name of the preference key to read

Returns String Current value of the preference key

Description

The extension.getPref() method returns the current value of the keyName preference key in the extension preference file.

If the keyName key does not exist in the file, an empty string is returned.

extension.getPrefFolder()

Folder extension.getPrefFolder()

Returns Folder Extension preference folder path

Description

The extension.getPrefFolder() method returns a Folder reference to the extension preference folder, where the extension can add its files.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html

If the extension preference folder does not exist yet when the method is called, it is created.

Example

var prefFolder = studio.extension.getPrefFolder();
studio.alert(prefFolder.path);
// displays for example under Windows:
// 'C:\Users\{Name}\AppData\Roaming\Wakanda Studio\ExtensionPreference\Hello World Extension\'

extension.getSolutionSetting()

String extension.getSolutionSetting(String keyName)

Parameter Type Description

keyName String Name of the solution preference key to read

Returns String Current value of the solution preference key

Description

The extension.getSolutionSetting() method returns the current value of the keyName preference key in the solution extension settings file.

If the keyName key does not exist in the file, an empty string is returned.

Implementation Note (v4): This method was previously named getSolutionPref().

extension.getSolutionSettingsFolder()

Folder extension.getSolutionSettingsFolder()

Returns Folder Solution extension settings folder

Description

The extension.getSolutionSettingsFolder() method returns a reference to the solution extension settings folder, where the extension solution
can add its files. The method returns a Folder object, that you can handle through the various properties and methods of the Folder class.

If the extension solution settings folder does not already exist when this method is called, it is created.

Implementation Note (v4): This method was previously named getSolutionPrefFolder().

Example

You want to display the current solution extension preference folder path:

var prefs = studio.extension.getSolutionSettingsFolder();
studio.alert(prefs.path);

extension.getUserAndPassword()

Object | Null extension.getUserAndPassword(String keyName)

Parameter Type Description

keyName String Key name

Returns Object, Null Object with 'user' and 'password' properties

Description

The extension.getUserAndPassword() method returns an object containing the current solution's user and password property values for the
keyName key. This information must have been set using the extension.setUserAndPassword() method.

If the method executes successfully, it returns an object with the following properties:

"user": user name
"password": user password (plain text)

The method returns null if the current solution's user and password are not found.

Example

If you store the following information:

studio.extension.setUserAndPassword("HelloServer2", "Jim", "456");

You can later call:

var myKey=studio.extension.getUserAndPassword("HelloServer2");
if(myKey != null) { //HelloServer2 has been found for the current solution
 var user=myKey.user; //user contains 'Jim'
 var password=myKey.password; //password contains '456'
}

extension.isPrefFileExisting()

http://livedoc.wakanda.org/Files-and-Folders/Folder.201-677723.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Preferences/extensionsetUserAndPassword.301-996278.en.html

Boolean extension.isPrefFileExisting()

Returns Boolean True if a preference file exists, False otherwise

Description

The extension.isPrefFileExisting() method returns true if a preference file exists for the extension, and false otherwise.

It can be useful for example to restore the factory default settings.

extension.isSolutionSettingsFileExisting()

Boolean extension.isSolutionSettingsFileExisting()

Returns Boolean True if a solution settings file exists, False otherwise

Description

The extension.isSolutionSettingsFileExisting() method returns true if a settings file exists for the solution extension, and false otherwise.

It can be useful, for example, to restore the factory default settings.

Implementation Note (v4): This method was previously named isSolutionPrefFileExisting().

extension.setPref()

Boolean extension.setPref(String keyName, String keyValue)

Parameter Type Description

keyName String Name of the preference key to write
keyValue String New value for the preference key

Returns Boolean True if the value was successfully set, false otherwise

Description

The extension.setPref() method writes a keyName/keyValue preference pair in the general extension preference file. For more information
about this file, please refer to the User preferences paragraph.

If the keyName preference was already defined in the file, its value is replaced by keyValue. If it was not defined, a new keyName/keyValue
preference pair is added to the file.

The method returns true if it was successful and false otherwise.

extension.setSolutionSetting()

Boolean extension.setSolutionSetting(String keyName, String keyValue)

Parameter Type Description

keyName String Name of the solution preference key to write
keyValue String New value for the solution preference key

Returns Boolean True if the value was successfully set, false otherwise

Description

The extension.setSolutionSetting() method writes a keyName/keyValue preference pair in the solution extension settings file. For more
information about this file, please refer to the Solution extension settings paragraph.

If the keyName preference is already defined in the file, its value is replaced by keyValue. If it is not defined, a new keyName/keyValue
preference pair is added to the file.

The method returns true if it is successful and false otherwise.

Implementation Note (v4): This method was previously named setSolutionPref().

Example

You want to set a value to a "color" key:

var isOK = studio.extension.setSolutionSetting("color", "blue");
if (isOK)
 studio.alert("Preference successfully saved");

extension.setUserAndPassword()

void extension.setUserAndPassword(String keyName, String user, String password)

Parameter Type Description

keyName String 'name' key associated with the identifiers
user String User name
password String User password

Description

The extension.setUserAndPassword() method allows you to store a user and password pair associated with the keyName property for the
current solution. This information is written in the user settings file. For more information about this file, please refer to the User preferences
paragraph.

Note that the password is stored as plain text in the preferences file.

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Preferences.201-939302.en.html#964769
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Preferences.201-939302.en.html#964778
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Preferences.201-939302.en.html#964769
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html

This method makes it easy for your extension to handle one or more pair(s) of user/password identifiers for the same solution. Use the
extension.getUserAndPassword() method to get a user/password combination for a keyName.

Example

For your "Hello World" extension, you want to store a user name and a password used to connect to a server for the current solution, named
"Camping":

studio.extension.setUserAndPassword("HelloServer1", "John", "123");

Note: Usually, these values are entered by the user from an interface form.

When the code is executed, the following data is added to the user preference file (for example on Windows:
C:\Users\John\AppData\Roaming\Wakanda Studio\ExtensionPreferences\Hello World\Preferences.json):

"keyChains":[
 {
 "user":"John",
 "name":"HelloServer1",
 "solution":"C:/Wakanda solutions/Camping/Camping Solution/Camping.waSolution",
 "password":"123"
 }
]

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Preferences/extensiongetUserAndPassword.301-996316.en.html

API: Solution

The "Solution" theme methods allow you to get information from the Solution level.

Using the 'studio' object

All Wakanda Extension APIs are available through the "studio" object so you must prefix each API call with 'studio.'
For example, to call the alert() method, you should write:

studio.alert("Hello World!");

currentSolution.getExpandedFolders()

Array currentSolution.getExpandedFolders()

Returns Array Expanded folder(s)

Description

The currentSolution.getExpandedFolders() method returns the list of folders which are currently expanded in the solution explorer window.
The returned value is an array of Folder objects.

Example

Given the following items in the solution explorer, if your solution is located at the root folder:

var arrExpand = studio.currentSolution.getExpandedFolders();
// arrExpand[0].path contains "C:/TestHandler/TestHandler/"
// arrExpand[1].path contains "C:/TestHandler/TestHandler/WebFolder/"
// arrExpand[2].path contains "C:/TestHandler/TestHandler/WebFolder/styles/"
// arrExpand[3].path contains "C:/Wakanda/Wakanda Studio/Resources/Web Components/walib/WAF/medias/"

currentSolution.getPath()

String currentSolution.getPath()

Returns String Path of the solution file

currentSolution.getSelectedItems()

Array currentSolution.getSelectedItems()

Returns Array Selected item(s)

Description

http://livedoc.wakanda.org/Wakanda-Studio-Extensions-API/API-Studio/alert.301-901702.en.html

