Directory

Cache Directory Calls to Improve Performance

The methods of the WAF Directory API are used to implement and manage user authentication functionality in your Wakanda Web
applications. But it is important to know that Directory calls, while providing important functionality, do come with a cost.

In this Technical Note you will see how the performance of the "Paid Time Off" application was improved by caching calls to the
Wakanda Directory.

Before Optimization

In the Paid Time Off application, each user is assigned to a Wakanda Directory Group at login. As the user navigates the User
Interface, elements are enabled or disabled based on the group to which a user belongs.

For instance, there is an event handler on the PTO datasource that fires each time the user selects a PTO request from the Grid
displaying the list of the PTOs. This event handler calls the Wakanda Directory to determine if the status Combo Box widget should
be hidden or shown:

pTO_RequestEvent.onCurrentElementChange = function pTO_RequestEvent onCurrentElementChange (event)
{
if ((WAF.directory.currentUserBelongsTo("Payroll")) ||
(WAF.directory.currentUserBelongsTo("Manager")) ||
(WAF.directory.currentUserBelongsTo("Administrator")))

{
$$('combobox2').show();
} else {
if ((waf.sources.pTO Request.status !== "pending")
&& (waf.sources.pTO Request.status !== "requested"))
{
$$('combobox2').hide();
} else {
$$('combobox2').show();
}
}

If you open up the Browser debugger you can see that calling the currentUserBelongsTo() method of the Directory object causes a
trip to the server each time:

http://livedoc.wakanda.org/Directory/Directory.100-814586.en.html
http://livedoc.wakanda.org/Directory/Directory-Class/currentUserBelongsTo.301-814771.en.html

8_ ‘' Main Page x\ﬁ . o . - it " - PR A ;
€« 2> C ID 4dpto.cloudapp.net/index.html *‘ # *

Paid Time Off Signed in as : David Robbins E

PTOs || Closed [7M]

Name D Date Entered
| David Robbins | |33 | 08/27/2012

¢ FirstDay & LastDay & | 5tatus

= Ly L Ly P o T WAl

]

o Elements '@ Resources w Snumes aTimeline & Profiles @Audits » Ircl. Search Network \l
Name

Size Time T
imeline
Content | Latency | 11.80s | 17.69s | 23.59s

Py

‘Hatlmd Blatus Type Initiator

Path Text

requestLineltemCollection 200 . waf-optimize?r Qo948 B.23s
CET applic...

[rest/PTO_Request(335) OK Script 571B| 391ms

Jrest/ $directory/currentUserBelongsTo/?$tog 200 waf-optimize?r 353B 386ms

ST lic... ;
Jrest/3directory/currentUserBelongsTo G 0K Appiic Script 16B 386ms >

Jrest/ $directory/currentUserBelongsTo/?$tog 200 1 waf-optimize?r 3538 16ms
applic...
frest/3directory/currentUserBelongsTo 0K PP Script 16B 16ms

POST applic...

|:| Jrest/ Sdirectory/currentUserBelongsTo/?$tog 200 waf-optimize?r 3538 10ms
[rest/3directory/currentUserBelongsTo OK Script 16BE 10ms

/rest/ $directory/currentUserBelongsTo/7$tog POST 200 li waf-optimize?r 14ms
applic...
frest/3directory/currentUserBelongsTo 0K i Script l4ms

Jrest/ $directory/currentUserBelongsTo/7$tof ROST 200 i waf-optimize?r 1lms
Jrest/3directory/currentUserBelongsTo 0K APRIC.. Script 1lms

Jrest/ $directory/currentUserBelongsTo/?$tog POST 200 i waf-optimize?r 10ms
frest/3directory/currentUserBelongsTo 0K applic... Script 16B 10ms

= = = | @ 0 @| Documents Stylesheets Images Scripts XHR Fonts WebSockets Other

Caching Our Calls to the Directory at Login

Since the groups that a user is a member of will not change during their session in our application we can create two variables:
currentUserlsManagement and currentUserlsEmployee and assign them values when the user logs in:

var currentUserIsManagement = false,
currentUserIsEmployee = false;

if (WAF.directory.loginByPassword(loginName, password)) {
if ((WAF.directory.currentUserBelongsTo("Payroll")) ||
(WAF.directory.currentUserBelongsTo("Manager")) ||
(WAF.directory.currentUserBelongsTo("Administrator")))
{
currentUserIsManagement = true;
} else if (WAF.directory.currentUserBelongsTo("Employee")) {
currentUserIsEmployee = true;
}
}

Later, we reset them when the user logs out:

if (WAF.directory.logout()) {
currentUserIsManagement = false;
currentUserIsEmployee = false;

}

We can then just reference these variables when we need to determine if the current user is a member of the management group or
not:

pTO_RequestEvent.onCurrentElementChange = function pTO RequestEvent_ onCurrentElementChange (event)

{

if (currentUserIsManagement) {
$$('combobox2').show();

} else {
if ((waf.sources.pTO Request.status !== "pending")

&& (waf.sources.pTO Request.status !== "requested"))

{
$$('combobox2').hide();
} eléé.{
$$('combobox2').show();
}

}i

After making this change, we no longer see calls to the Directory object on the server when a user selects a PTO Request from the
Grid:

% Main Page x

€« > C [D 4dpto.cloudapp.net/index.html|

Paid Time Off

[ewRequest |

Closed

% FirstDay & LastDay & | Status

Name D Date Entered
| David Robbin BEE] [08/2712012

)

[x] Elements Resources W Sﬂurl:es aTim!Iine @ Profiles 3-1 Audits » (_Q. Search Netwark

Status e Size Time .
|Haﬂmd ‘Tut Type Initiator Content | Latency Timeline

| 28ms |

/rest/Note/?$top=40&$filter="pto.|1D%20%3D%2| 200 i waf-optimize?n 558B 20ms
CET applic...

[rest/Note OK Script 1468 19ms <>

/rest/Note/$entityset/DD2541261369BE4 1BD5(200 waf-optimize?n 3388 2Zms

lic...
[rest/Note/Sentityset/DD2541261369BE41BD5C48 oK APPHRC- o 2B 22ms

2 requests | 8968 transferred
Scripts XHR Fonts WebSockets Other

In Conclusion

As you develop your Wakanda application, it is a good practice to open the browser developer tools network panel and note the calls
that WAF is making to the server to see if there are any optimizations you can make to improve your application’s performance.

Directory Class

The methods in the WAF Directory API facilitate the implementation and management of user authentication functions in your
Wakanda Web applications.

This API is useful in the following context:

e You chose the "custom" authentication mode for your Wakanda solution (see the Authenticating Users section).

e You use your own widgets to enter and display connection parameters (in other words, you do not use the Login Dialog widget
available in WAF).
The "Login dialog" widget has a dedicated high-level API (for more information, refer to the Login Dialog section).

e Whatever the widget you use to handle login, you want to develop customized features based on a user's session.

Note: For more information about the user and groups management in Wakanda, please refer to chapter Users and Groups.

currentUser()

User | Null currentUser()

Returns User, Null Current user properties or null for unidentified user

Description

The currentUser() method returns the user as identified by Wakanda Server. The returned object includes the ID, fullName and
userName properties for the user (userName corresponds to the name property on the server side). Server-side, objects of type User
can be handled through the methods and properties of the User class.

You can use this information, for example, to display the user name in a login information area.

The user must have been previously authenticated by Wakanda Server. If this method is not executed within the context of a valid
user session, it returns null.

Example

Let's say that you want to display the current user's full name in an area on your Page. For example, you can use a Text widget bound
to the "username” variable datasource and write in the Page's On Load event:

username = WAF.directory.currentUser().fullName; //assign the value to a username global variable
sources.username.sync(); // force the update of the variable datasource

currentUserBelongsTo()

Boolean currentUserBelongsTo(String group [, Object options])

Parameter Type Description

group String Group to check for current user membership

options Object Block of options for asynchronous execution

Returns Boolean True if the current user belongs to the group, False otherwise
Description

The currentUserBelongsTo() method returns true if the current user belongs to group. If the current user does not belong to group
or if there is no current user defined in the session, the method returns false.

You can pass in group either:

e a group name (string)
e agroup ID (string)

This method is useful when you want to check a user's membership to a group on-the-fly so that you can, for example, hide interface
elements depending on the context.
This method can be called synchronously (without the options parameter) or asynchronously (with the options parameter).

options

For detailed information about this parameter, please refer to the Syntaxes for Callback Functions section.

In the options parameter, you pass an object containing the onSuccess and (optionally) onError callback functions along with any
additional properties, depending on the method. Each callback function receives a single parameter, which is the event.

You can also pass the onSuccess and onError functions directly as parameters to the currentUserBelongsTo() method. In this case,
they must be passed just before (and outside) the options parameter.

Example

At login, we want to check if the current user belongs to the "management” group and display or hide a few buttons accordingly.
We call a specific function on the 'login’ event (as well as in the 'logout’ event) of the Login Dialog widget:

login0.login = function login0O_login (event) // called each time the user opens a new user session

{

http://livedoc.wakanda.org/Data-Security-and-Access-Control/Authenticating-Users.200-725903.en.html
http://livedoc.wakanda.org/GUI-Designer/GUI-Designer-Widgets/Login-Dialog.300-814597.en.html
http://livedoc.wakanda.org/Wakanda-Widgets-Instance-API/Login-Dialog.201-814603.en.html
http://livedoc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://livedoc.wakanda.org/Users-and-Groups/User/ID.303-727151.en.html
http://livedoc.wakanda.org/Users-and-Groups/User/fullName.303-727117.en.html
http://livedoc.wakanda.org/Users-and-Groups/User/name.303-727020.en.html
http://livedoc.wakanda.org/Users-and-Groups/User.201-726980.en.html
http://livedoc.wakanda.org/Users-and-Groups/Group/name.303-727667.en.html
http://livedoc.wakanda.org/Users-and-Groups/Group/ID.303-727695.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html

checkPermissions();

}i

The checkPermissions() function evaluates the user's membership and displays elements in different widgets depending on his/her
access rights:

function checkPermissions()

{
if (waf.directory.currentUserBelongsTo("management"))
{
$('#autoForm0 .waf-toolbar-element[title="Add"]').show();
$('#autoForm0 .waf-toolbar-element[title="Delete"]').show();
$('#autoForm0 .waf-toolbar-element[title="Save"]').show();
$('#dataGrid0 .waf-toolbar-element[title="Add"]').show();
$('#dataGrid0 .waf-toolbar-element[title="Delete"]').show();
}
else
{
$('#autoForm0 .waf-toolbar-element[title="Add"]').hide();
$('#autoForm0 .waf-toolbar-element[title="Delete"]').hide();
$('#autoForm0 .waf-toolbar-element[title="Save"]').hide();
$('#dataGrid0 .waf-toolbar-element[title="Add"]').hide();
$('#dataGrid0 .waf-toolbar-element[title="Delete"]').hide();
}
}

Note: The checkPermissions() function could also be called in the onLoad event of the Page.

login()

Boolean login(String name , String password [, Object options])

Parameter Type Description

name String User name

password String User password

options Object Block of options for asynchronous execution

Returns Boolean True if the user has been successfully logged, otherwise False
Description

The login() method is a shortcut to the loginByPassword() method. For more information, refer to the loginByPassword() method.

loginByKey()

Boolean loginByKey(String name , String key [, Object options])

Parameter Type Description

name String User name

key String Computed key associated to the user

options Object Block of options for asynchronous execution

Returns Boolean True if the user has been successfully logged in, otherwise False
Description

The loginByKey() method authenticates a user on the server by his/her name and key and, in case of success, opens a new user
Session on the server.

Both name and key parameters are evaluated on the server. The login request is accepted:

e When the user name and key are registered in the Directory of the application (for more information, please refer to the
section Users and Groups) or

e When the user name and key are processed successfully in your custom LoginListener function installed by the
setLoginListener() method.

The loginByKey() method is executed synchronously. If the authentication is completed successfully, loginByKey() returns true,
opens a user session on the server, and puts a cookie on the client.

In name, pass a string containing the name of the user to log in.

In key, pass the computed key value of the user you want to log in. Usually, this key will result from a hash computation, for example
a SHA-1 computation combining the user's password and other infiormation, but actually you can use any value you want, resulting
from any custom function. The same computation must have been done on the server side, so that the sent key and the key stored on
the server can be compared using the LoginListener function. Using a key challenge is more secure because it avoids sending the
password itself over the network.

Note: Wakanda Server computes and stores a SHA-1 key in the Directory of the application.
options

For detailed information about this parameter, please refer to the Syntaxes for Callback Functions section.
In the options parameter, you pass an object containing the onSuccess and (optionally) onError callback functions along with any

http://livedoc.wakanda.org/Directory/Directory-Class/loginByPassword.301-815260.en.html
http://livedoc.wakanda.org/Directory/Directory-Class/loginByPassword.301-815260.en.html
http://livedoc.wakanda.org/Users-and-Groups/Session.201-816795.en.html
http://livedoc.wakanda.org/Data-Security-and-Access-Control/Users-and-Groups.200-725889.en.html
http://livedoc.wakanda.org/Users-and-Groups/Directory/setLoginListener.301-871936.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html

additional properties, depending on the method. Each callback function receives a single parameter, which is the event.

You can also pass the onSuccess and onError functions directly as parameters to the loginByKey() method. In this case, they must be
passed just before (and outside) the options parameter.

loginByPassword()

Boolean loginByPassword(String name , String password [, Object options])

Parameter Type Description

name String User name

password String User password

options Object Block of options for asynchronous execution

Returns Boolean True if the user has been successfully logged, otherwise False
Description

Note: You can also call this method's alias login().

The loginByPassword() method authenticates a user on the server and when successful opens a new user Session on the server.
Both name and password parameters are evaluated on the server. The login request is accepted:

e When the user name and password are registered in the Directory of the application or
e When the user name and password are successfully validated through a custom Login listener function installed using the

setLoginListener() method. This listener function can evaluate the name and password from a datastore class or any custom
criteria.

For more information, refer to the Authenticating Users section.

If authentication is completed successfully, the method returns true, opens a user session on the server, and puts a cookie on the
client. If authentication fails, the method returns false and the login request is refused.

In name, pass a string containing the name of the user to log in.
In password, pass the user's password. Note: The password comparison is case-sensitive.

options

For detailed information about this parameter, please refer to the Syntaxes for Callback Functions section.

In the options parameter, you pass an object containing the "onSuccess” and (optionally) "onError” callback functions along with any
additional properties, depending on the method. Each callback function receives a single parameter, which is the event.

You can also pass the onSuccess and onError functions directly as parameters to the loginByPassword() method. In this case, they
must be passed just before (and outside) the options parameter.

Example

In our example, we want to log in the user "bob" with the password "BoB123". It can be done with a synchronous or an asynchronous
syntax:

//Synchronous example
WAF.directory.loginByPassword("bob", "BoB123");

//Asynchronous example with error handling
WAF.directory.loginByPassword("bob", "BoB123", {
onSuccess: function(event){
if (event.result == true){
//Do something after successful login like update a user name variable
user = WAF.directory.currentUser().userName;
sources.user.sync();

} else {
return {error: 101, errorMessage: "Incorrect login credentials."};
}

I

onError: function(event){
return {error: 100, errorMessage: "Failed to communicate with server."};

)i

Example

In this example you create two variables and assign them values when the user logs in:

var currentUserIsManagement = false,
currentUserIsEmployee = false;

if (WAF.directory.loginByPassword(loginName, password)) {
if ((WAF.directory.currentUserBelongsTo("Payroll")) |
(WAF.directory.currentUserBelongsTo("Manager")) |
(WAF.directory.currentUserBelongsTo("Administrato

|
|
r')))

http://livedoc.wakanda.org/Directory/Directory-Class/login.301-814977.en.html
http://livedoc.wakanda.org/Users-and-Groups/Session.201-816795.en.html
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/Users-and-Groups/Directory/setLoginListener.301-871936.en.html
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/Data-Security-and-Access-Control/Authenticating-Users.200-725903.en.html
http://livedoc.wakanda.org/HTTP-Request-Handlers/HTTPRequest/password.303-803545.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html

currentUserIsManagement = true;
} else if (WAF.directory.currentUserBelongsTo("Employee")) {
currentUserIsEmployee = true;
}
}

logout()

void logout([Object options])

Parameter Type Description

options Object Block of options for asynchronous execution
Description

The logout() method logs out the user from the server and closes the current user session on the server. After the method is
executed, there is no defined current user client-side.

The contents of the current page are not automatically refreshed if some session-related information or interface elements were
previously displayed on screen. You can reload the page in the callback function in the onSuccess event.

If session-related information is displayed in a Wakanda widget such as a Grid, it would be a good idea to use the logout() function
because the logout operation is executed in a synchronous way and the widget contents are automatically refreshed afterwards.

options

For detailed information about this parameter, please refer to the Syntaxes for Callback Functions section.

In the options parameter, you pass an object containing the onSuccess and (optionally) onError callback functions along with any
additional properties, depending on the method. Each callback function receives a single parameter, which is the event.

You can also pass the onSuccess and onError functions directly as parameters to the logout() method. In this case, they must be
passed just before (and outside) the options parameter.

Example

You want to add a Logout button that logs the user out and reloads the page:

buttonl.click = function buttonl click (event)
{
WAF.directory.logout ({
onSuccess: function(event) {
location.reload();
Y
onError: function(error) {
alert ("Logout error");
}
P
}i

http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html

