
Datasource

Welcome to the Wakanda Datasource API. As part of the Wakanda Application Framework (WAF), the Datasource API includes all the APIs that are available
on Wakanda client‐side. This high‐level API allows you to control the Datasource manager, which is responsible for managing automatic functions between
widgets on the Pages and the data handled by the datastore via JavaScript.

Using the Datasource API, you can, for example, implement functions on the client that:

add or delete entities in the widgets,
perform queries and sorts the data in the widgets,
subscribe to datasource events and dispatch events to subscribers, and
execute code on the client when data is modified.

Introduction

What is a Datasource?

Datasources are a central concept to Wakanda's architecture and are intended to make developping Web applications as simple as possible. A datasource
contains data and automatically generates events when this data is changed. Your code and widgets can subscribe to these events and take appropriate
actions (for example, when the onCurrentElementChange event is generated by a datasource, your code can calculate a value to then display or highlight the
corresponding row in a Grid widget). Different kind of events can be subscribed to separately.

One or more widgets can subscribe to a datasource on the Page. Once subscribed, a widget has access to many automatic functions to help manage its
content:

Automatically send data from the datasource to the widget.
Automatically update the datasource data when it is modified in a widget to which it is subscribed. For example, when a user enters a value in the
widget, it will be sent to the datasource.
Automatically update all the widgets subscribed to the same datasource when data is modified. If data is modified in the Grid widget, the updated
value will be displayed in any other widget on the Page with the same datasource.
Implementing comprehensive event management that calls code when data in the datasource changes.

Datasources Generate Events

Automatic event management is a major characteristic of datasources that greatly simplifies code you write. It lets you create dynamic and interactive
interfaces without having to worry about data updating issues.

To understand automatic event management in Wakanda datasources, you should consider the following points:

1. You can write code to execute automatically when a specific datasource event is generated; the code "listens" to the datasource and is executed as
soon as the event occurs. The events that are accessible vary according to the type of the datasource. The following events are available:

onBeforeCurrentElementChange: before the current element is modified (in this event, you can retrieve the datasource before it is modified)
onCurrentElementChange: the current element of the datasource was modified
onCollectionChange: the current entity collection of the datasource was modified
onAttributeChange: the value of the attribute was modified
onElementSaved: an entity was saved on the server

These events and their associated code are defined from the Datasource Events properties page of a datasource in the Prototyper. You can also add
listeners dynamically using the addListener() method.

2. You can have widgets subscribe to the datasources. The contents of the widget are then defined by the datasource. In the Prototyper, this operation
can be done by dragging a datasource and dropping it onto a widget. Each widget can only be subscribed to a single datasource. However, several
different widgets can subscribe to the same datasource.

3. Each time an event occurs in the datasource, all subscribers are automatically called. All "listener" functions associated with the event are executed
and the contents of all the subscribed widgets are updated. Triggering events is done automatically by the Wakanda Datasource manager whenever
necessary (for example, executing the allEntities() method on a datasource automatically generates the execution of the 'onCollectionChange' event
for all widgets). Events can be triggered regardless of how the contents of the datasource were modified either automatically or using the
autoDispatch() method.

The following image illustrates the events management principles for a datasource:

This principle lets you define the flow of the data and their relations independently from your application's interface. These two aspects of development can
be done separately: updating one does not change the other. For example, if you need to recalculate the tax every time the salary attribute in the current
entity changes (regardless of the reason, whether the entity was changed or the value was modified). It is simple to write the code in the appropriate
datasource event. You can then subscribe widgets to the datasource.

Managing events for datasources is similar to the logic of callback functions, used during asynchronous calls to methods of the Datasource and Dataprovider
APIs (see Principles of asynchronous execution). The advantage is that you can write more generic and centralized code directly at the level of the
datasource event: it is executed regardless of the method or function at the origin. For example, calling the methods query(), distinctValues(), allEntities(
), etc. triggers the same event and therefore executes the same code. Events let you avoid having to repeat your code in 'onSuccess' callback functions for
each method: it is placed in one spot and is operational throughout the application.

In return, it is necessary to properly handle the chain of events because their automatic execution may cause undesirable side effects. In certain cases, for
example, you may want to execute a query() without having to use the code of a generic event: in this case, it is preferable to use the callback function
('onSuccess') in the options block when calling the method. Both types of logic can be used simultaneously.

Remember that datasource events are generated in all cases. If you put code in the 'onSuccess' or 'onError' callback functions, it is called after the events so
you can therefore execute specific code after the generic code.

Types of Datasources

Wakanda provides two types of datasources:

Server Datasources: based on datastore classes or relation attributes. In this case, data managed by this datasource is associated with a datastore
class stored on the server

http://livedoc.wakanda.org/Datasource/Events/onBeforeCurrentElementChange.304-998059.en.html
http://livedoc.wakanda.org/Datasource/Events/onCurrentElementChange.304-997936.en.html
http://livedoc.wakanda.org/Datasource/Events/onCollectionChange.304-997818.en.html
http://livedoc.wakanda.org/Datasource/Events/onAttributeChange.304-997997.en.html
http://livedoc.wakanda.org/Datasource/Events/onElementSaved.304-998157.en.html
http://livedoc.wakanda.org/Datasource/Datasources/addListener.301-607904.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/allEntities.301-607937.en.html
http://livedoc.wakanda.org/Datasource/Datasources/autoDispatch.301-607915.en.html
http://livedoc.wakanda.org/Datasource/Advanced-Features/Principles-of-asynchronous-execution.300-607229.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/distinctValues.301-608040.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/allEntities.301-607937.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html

Local Datasources: based on JavaScript: variables, arrays (arrays of objects), or objects. In this case, data managed by this datasource is associated
with a variable, array, or object.

Datasources based on datastore classes or relation attributes have specific automatic functions because they are directly connected to data stored in the
datastores of Wakanda Server. For more information about server datasources, refer to Using Server Datasources.
Local datasources require programming to synchronize JavaScript objects with datasources. For more information about local datasources, refer to Using
Local Datasources.
For more information about creating datasources with Wakanda Studio, refer to the section in the Prototyper chapter.

When to Use a Datasource?

The Datasource API is one of Wakanda's three JavaScript data access APIs. You can access it on the client and it belongs to the overall Wakanda Application
Framework (WAF) API. You use the methods in the Datasource API to manage widgets associated with datasources on your application's Pages. You generally
execute them in asynchronous mode.

The two other JavaScript data access APIs are the Datastore and the Dataprovider. You access the Datastore API on the server; it provides full access to the
datastore models and data for the Wakanda applications on the server machine (see Datastore). You access the Dataprovider API on the client; it provides
low‐level methods that you can use to manage data exchanges between the datasources and Wakanda Server (see Dataprovider).
This diagram represents the architecture of the JavaScript data access APIs in Wakanda:

Usually, your Wakanda applications use a combination of several different APIs. You choose which API to use, whether on the server or the client, according
to the business logic of your application and your model‐related needs. More specifically:

When you need to programmatically control the operation of datasources, use the high‐level methods of the Datasource manager (client API);
When you need to perform advanced processing on client‐side data without necessarily displaying the data or enabling the automatic datasource
mechanisms, use the methods of the Dataprovider (client API);
When you need to perform processing related to business rules that modify the data, use the Datastore (server API).

The goal is to try to minimize the number of requests to the server since these operations have a tendency to slow down the execution of your application.
Therefore, it is recommended to run as much code as possible on the server using the Datastore API and to only send requests to execute a function and
retrieve results. All operations related to the business logic that modify data must be run on the server because client APIs are responsible for data
presentation and user interaction. For example, it is more efficient to sort a datasource class on the server and return the resulting entity collection than to
sort the datasource's entity collection. On the server you have greater control over access, errors, etc. You can use datastore class methods or remote
procedure calls (RPCs) to execute code on the server.

Conversely, data formatting tasks should be performed on the client using WAF APIs. For example, if processing results for a large set of data, it is preferable
to send it as an array of objects from the server and to format it on the client rather than generating the HTML on the server and then sending it to the
clients.

The distribution of tasks is related to the concept of a "service" and facilitates data access from clients other than standard Web browsers: when the server
returns "raw" data in the form of arrays, it is possible to create Smartphone applications, desktop applications, Flash applications, and so on, that can
connect to it and then format the data locally. The idea is to separate the interface layer as much as possible from the data layer in order to increase the
power of your Web applications.

Using Server Datasources

Server datasources refer to those created for either a datastore class or a relation attribute. They have specific properties and behavior because their
contents are linked to data managed by Wakanda Server.

A datasource of the Datastore class type always includes the three following elements:

A datastore class to which it is linked;
A "current" entity collection, which is a current set of entities;
A current entity that may or may not belong to the current entity collection.

These various facets are activated automatically according to the context. For example, when you call the selectNext() method, the current entity of the
datasource is modified. When you perform a sort using the orderBy() method, the datasource's current entity collection is sorted. When you use the query()
method, the query is executed in the datasource's datastore class and the result becomes the new entity collection. Keep this logic in mind when you are
working with server datasources.

http://livedoc.wakanda.org/Datasource/Introduction/Using-Server-Datasources.300-607174.en.html
http://livedoc.wakanda.org/Datasource/Introduction/Using-Local-Datasources.300-618741.en.html
http://livedoc.wakanda.org/Prototyper/Prototyper.100-1051423.en.html
http://livedoc.wakanda.org/Datastore/Datastore.100-588923.en.html
http://livedoc.wakanda.org/Dataprovider/Dataprovider.100-606954.en.html
http://livedoc.wakanda.org/Datastore/Datastore.100-588923.en.html
http://livedoc.wakanda.org/Datasource/Datasources/selectNext.301-608016.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/orderBy.301-607959.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html

Current Entity Collection and Current Entity

Each datasource works with a current entity collection and a current entity that, at the datasource level, are copies of entities stored on the server. This is
illustrated in the following diagram:

A current entity collection is a selection of entities belonging to the datastore class and with which the datasource works. For example, the orderBy()
method applies to the current entity collection of the datasource. The current entity collection can contain zero, 1 or X entities from the datastore
class. By default, the current entity collection of a datasource contains all the entities of the datastore class (except if a Restricting Query is defined
on the datastore class); it is then modified depending on your actions, queries and so on.
There is one current entity collection per datasource. If you create two or more datasources on the same datastore class, each one has a different
current entity collection and you can work simultaneously on different collections of entities from the same datastore class. Note that in this case,
Wakanda automatically handles any write conflicts in the case of simultaneous attempts to save the same entity on the server (see Locking Entities).

A current entity is an entity belonging to the datastore class and with which the datasource works. For example, the save() method saves the current
entity on the server. The current entity usually belongs to the current entity collection, but in certain cases, it is not found within this collection. By
default, the current entity is the first entity of the current entity collection of the datasource; it can then change depending on your actions. For
example, the newEntity() method creates a new entity, which then becomes the current entity.

Current Elements and Methods

For the sake of simplicity, server datasource methods and properties apply to the datasource's "current entity," "current entity collection," or "datastore class"
depending on the context and relevance of the information. This point is specified in the documentation of each method.

Two similar lines of code can therefore be applied to different kinds of elements. For example, the length property returns the size of the datasource's
current entity collection:

var theName = sources.employee.lastName ; // returns the value of the current entity's lastName attribute
var myLength = sources.employee.length // returns the size of the current entity collection

Accessing Datasource Attributes and Values

Datastore class datasources are specific objects built from datastore classes on the server, but are not identical: they have additional properties and require
specific processing.

When a server datasource is created, it contains:

All the storage attributes including calculated attributes and object type attributes
For these attributes, values stored in the copy of entities in the datasource and in the entities themselves on the server are identical. You access them
directly from the sources object through dot notation:

var currentFirstName = sources.person.firstName;

...returns the value of the 'firstName' attribute of the datasource's current entity. In this case, the value of the entity's attribute is a local copy.
You can also use the "array" notation:

sources[person] // is the same as sources.person

Regarding object type attributes, you can access any level or sublevel of the object structure using the standard object notation.
For example, if you have defined a shape datasource containing the desc object attribute, the current entity contains the following values in the
desc attribute:

{x:2,y:"blue",z:{a:1, b:2}}

You can write:

sources.shape.desc.z.b //returns 2

You can also set any property or value (whether it exists or not) in the object attribute through a variable, for example using code such as:

myVal = {z:{c:"hello"}}; // you have to use a variable;
sources.shape.desc = myVal;
sources.shape.save();
// desc = {x:2,y:"blue",z:{a:1, b:2, c:"hello"}}

http://livedoc.wakanda.org/Datasource/Server-Datasources/orderBy.301-607959.en.html
http://livedoc.wakanda.org/Terminology/Terminology.100-949352.en.html#949623
http://livedoc.wakanda.org/Datastore/Entity/Locking-Entities.300-606099.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/save.301-607761.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/newEntity.301-607749.en.html

References to the "N‐>1" and "1‐>N" relation attributes
To access values of N‐>1 relation attributes, i.e., towards an entity (for example "worksFor" attribute in the employee datasource), you must
use the set() and load() functions.
set() is mandatory to bind a related N entity to a "parent" 1 entity (see below). load() is only necessary for access to a related entity that was
not preloaded through the autoExpand option of the query() method or by the declareDependencies() method.

Note that when queries explicitly request data related to the datasource to be sent back (such as, for instance, the autoexpand option of the
query() method), you can access the values using the getAttributeValue() method:

var currentFather = sources.person.getAttributeValue("father.name");

...and, provided the data is there, this can be extended:

var currentGrandFather = sources.person.getAttributeValue("father.father.name");

Note: With the Dataprovider, to access related values you must use the getValue() and setValue() methods in order to retrieve the server
data.
To access values of 1‐>N relation attributes, i.e., towards an entity collection (for example "employees" in the Company datastore class), you
need to access the associated relation attribute datasource itself. For example, consider the "employees" relation attribute datasource, based on
the "company.employees" datastore class datasource attribute. To access its value (which is actually an entity collection), you can write:

sources.company.name; //name of the current company entity
sources.employees.name; //name of employees of the current company (collection)

"Public" datastore class methods: in the same way you access a datasource's attribute, you can easily make calls to a datastore class method:

var currentAge = sources.person.calculateAge();

Note: This simple call would execute the calculateAge() method in synchronous mode, which is actually not recommended especially if a response
from the server is expected. For more information, refer to the Principles of asynchronous execution and Calling Datastore Class Methods
sections.

Assigning Values to Datasource Attributes

You can assign a value to a datasource attribute in different ways, depending on the attribute kind:

Direct assignment using the standard "=".
This can be used only with storage attributes containing scalar values. Example:

sources.company.city = "Chicago";

Using setAttributeValue().
This method can be used with all kinds of storage attributes (including Image or Blob types) as well as relation attributes. Examples:

sources.company.setAttributeValue("name","Acme"); //storage attribute
sources.employee.setAttributeValue("photo", file); //storage image file attribute
sources.employee.setAttributeValue("employer",2); //relation attribute

Using setValue().
This method can be used only with storage attributes (including Image or Blob types); it is mainly useful for generic programming. Example:

sources.company.getAttribute("city").setValue("Chicago");

Using set().
This method can be used only with relation attributes. It allows you to bind an entity with another one. Examples:

sources.employee.employer.set(sources.company); //current entity of the datasource
sources.employee.employer.set(2); //primary key

For more information, see also the "Binding Entities" paragraph.

Creating Elements

The standard way to create new elements in a datasource by programming is to use the addNewElement() method. This method is available for both server
and local datasources and thus, allows you to write generic code:

see addNewElement() method documentation for server datasources;
see addNewElement() method documentation for local datasources.

Two other methods allow the creation of new entities in server datasources: addEntity() and newEntity(). Note however that they meet specific needs and
cannot be used with local datasources.

Binding Entities

When two server datasources are related at the model level, you bind entities using the set() method. Binding entities means storing the relation between

http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/set.301-626509.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/load.301-626607.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/set.301-626509.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/load.301-626607.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html
http://livedoc.wakanda.org/Datasource/Datasources/declareDependencies.301-623845.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/getAttributeValue.301-607849.en.html
http://livedoc.wakanda.org/Dataprovider/Entity-attribute/getValue.301-610276.en.html
http://livedoc.wakanda.org/Dataprovider/Entity-attribute/setValue.301-610283.en.html
http://livedoc.wakanda.org/Datasource/Advanced-Features/Principles-of-asynchronous-execution.300-607229.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Calling-Datastore-Class-Methods.300-611596.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/setAttributeValue.301-1084303.en.html
http://livedoc.wakanda.org/Datasource/Datasource-Attribute-Objects/setValue.301-638321.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/set.301-626509.en.html
http://livedoc.wakanda.org/Datasource/Introduction/Using-Server-Datasources.300-607174.en.html#955449
http://livedoc.wakanda.org/Datasource/Server-Datasources/addNewElement.301-607725.en.html
http://livedoc.wakanda.org/Datasource/Local-Datasources/addNewElement.301-624335.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/addEntity.301-607713.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/newEntity.301-607749.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/set.301-626509.en.html

entities ‐‐ instead of duplicating their values.

For example, consider the classic Employee/Company datastore classes related through "employer" and "staff" navigation attributes:

In a Page containing an "employee" and a "company" datasource, to bind a selected employee to a selected company, you just need to write, for example in
the script of a Bind button:

//Link an employee to their company
sources.employee.employer.set(sources.company);
// Save the relation
sources.employee.save();

The relation between the current employee and the current company is then stored.

If employee entities are displayed in a widget such as a datagrid that also contains column(s) with company data, you need to refresh the grid using the
serverRefresh() so that the relation is shown. Since this method must be called asynchronously, you need to write it in a callback function:

sources.employee.save({ onSuccess:function(event)
 {
 sources.employee.serverRefresh();
 }
});

Unbinding Entities

To unbind the related entity from the current entity of the datasource, just pass null as parameter of the set() method, for example:

sources.employee.employer.set(null); // unbinds the current entity

Using Local Datasources

Local datasources (based on JavaScript variables, arrays, or objects) are Wakanda objects whose contents are based on the value of a local object defined on
the Page. It is important to note that the datasource is not the local object itself but it is associated to it. This association works in both directions, but
requires that the objects (from JavaScript to Wakanda) be synchronized.

Note: For convenience, in this documentation we use the qualifier "Variable" for local datasources of type variable, array, or object because they are
similar in how they work.

Synchronizing Values

The value of a local Wakanda datasource (variable, array, or object) is based on that of a corresponding object of the same type on the JavaScript side.

You associate the Wakanda datasource with the local object by passing the name of the object as the "source" of the datasource (entering a value for this
property automatically creates a datasource of type Variable with the same name, if there is not already one):

Binding the "mySource" variable datasource to a Text widget:

Binding the "myArray" array datasource to a Datagrid widget:

http://livedoc.wakanda.org/Datasource/Datasources/serverRefresh.301-607702.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasource-Related-Attributes/set.301-626509.en.html

On the Wakanda side, this operation creates a reference to the JavaScript object in the datasource object. The datasource has automatic functions that
allow you to manage the publishing and subscribing of datasources as well as events. The local object must exist and be managed elsewhere in the Page.

Synchronizing two objects, for example when a value is modified, differs according to the direction in which it is performed:

From Wakanda to a variable: In this direction, synchronization is automatic because the Wakanda framework manages the contents of the datasource.
As a result, when, for instance, the user modifies the value of the widget, the datasource's automatic functions are activated (event management, a
call to all subscribers, etc.) and the value of the local object is updated automatically.
From a variable to Wakanda: In this direction, synchronization is not automatic because Wakanda is not notified when the value of a local object is
modified in the code. You must trigger synchronization yourself by calling the sync() method. Executing this method in turn triggers automatic
functions of the datasources.

The following diagram summarizes this principle:

Initializing Local Variables

When you use JavaScript variables on your Pages, you must take into account that datasources are defined in the global object. The associated JavaScript
variables must also be defined in the global object otherwise Wakanda is not aware of its value.

Let's take a look at the script of a button that displays "Hello World" in the Text widget:

// Code that does not work
button1.click = function (event)
 {
 var mySource = "Hello World"; // create and assign the local variable
 source.mySource.sync(); // Synchronization
 };

The above code does not work because the JavaScript variable is local to the button. In order for this code to work, you must define the variable in the
global space:

// Code that works
button1.click = function (event)
 {
 mySource = "Hello World"; // create and assign the global variable
 source.mySource.sync(); // Synchronization
 };

http://livedoc.wakanda.org/Datasource/Local-Datasources/sync.301-624417.en.html

As a result, you must pay attention not to give inadvertently "reserved" names to your JavaScript variables so as not to risk having a conflict with objects
predefined in the DOM. For example, if you name a global variable "location" and bind it to a datasource, you will overwrite the location property of the
document (which is the address of the page). When the page is loaded, the datasource is reset with the page's current address and any change to the
datasource changes the page's address. Note that you can make use of this feature, provided that you make sure to control the consequences.

Creating Elements

The standard way to create new elements in a datasource by programming is to use the addNewElement() method. This method is available for both server
and local datasources and thus, allows you to write generic code:

see addNewElement() method documentation for server datasources;
see addNewElement() method documentation for local datasources.

Two other methods allow the creation of new entities in server datasources: addEntity() and newEntity(). Note however that they meet specific needs and
cannot be used with local datasources.

Datasources and Widgets

One of the main goals for datasources is to simplify the setup and use of widgets on your Pages. Widgets and datasources interact at all levels (from design to
use) thanks to many automatisms.

Note: For more information about creating widgets, refer to the GUI Designer chapter of the Wakanda Studio Reference Guide.

To reference a widget on a Page, you can use the $$ method. This specific WAF method lets you pass the widget's ID directly, which is a shortcut for calling
WAF.widgets[id]. For example:

var listWidget = $$('theList'); // returns an object containing the widget whose ID is "theList"

Note: You can also reference widgets as jQuery objects by using $, for example, $('#theList').

The nature of a widget determines whether it works with the current entity collection or the current entity in a server datasource. For local datasources, the
widget type determines whether it works with complex objects (array or object) or simple objects (variables).

Grid widgets interact with the current entity collection of a server datasource and with local datasources (of type Array and Object):

With this type of widget, by default, Wakanda loads and automatically displays all the entities of the datastore class on which the datasource is based.
The initial request creates an entity collection on the server containing all the entities; this entity collection is used for any subsequent requests.
Server‐side management of entity collections is automatic and optimized; entity collections have a limited lifespan but the information needed for
their generation is kept on the client and is therefore available at any time.
For local datasources, Wakanda loads and automatically displays the whole contents of the Array or Object.

Simple widgets, like Text Input, interact with the current entity of the server datasource or a local datasource of type Variable:

http://livedoc.wakanda.org/Datasource/Server-Datasources/addNewElement.301-607725.en.html
http://livedoc.wakanda.org/Datasource/Local-Datasources/addNewElement.301-624335.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/addEntity.301-607713.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/newEntity.301-607749.en.html
http://livedoc.wakanda.org/GUI-Designer/GUI-Designer.100-1051423.en.html

Advanced Features

Principles of asynchronous execution

In the Wakanda Application Framework (WAF) API, calls to built‐in methods usually involve sending requests to the server and waiting for a response. For
example, when you query the entities in a datastore class using the query() method, a request is sent to the server and it responds by returning the resulting
entity collection.

Therefore, client‐side API methods must always be called in asynchronous mode. When requests are sent to the server, the script continues to run normally.
When calling a method, you pass an options block containing a function that is called automatically when the server responds (also known as a callback
function). The callback functions allow applications to run seamlessly regardless of the server's response time.

Note: In a hypothetical synchronous mode, requests would be sent to the server and, when a response is expected, the executing of the script would be
suspended until the server responds. During this lapse of time, the entire browser would be blocked and no action could be performed. If the server
response is delayed for whatever reason, the application becomes unusable. This operation does not conform to proper ergonomics in Web applications.

Availability of Data in the Code

It is important to take into account the problems related to receiving data and the availability of data in asynchronous mode. For example, let's look at the
following (incorrect) code:

Note: This code uses methods from the Dataprovider API, but the explained concepts are valid for the Datasource API as well.

// Example of incorrect code
var vcount;
var myset = ds.Person.query("ID > 100 and ID < 300", {
 onSuccess: function(event) // we pass a function that receives the server's response
 {
 vcount = event.entityCollection.length; // we retrieve the size of the entity collection
 }
 });
$("#display").html("selection : "+vcount);
 // we display the size of the entity collection in the container whose ID is "display"

This code does not produce the desired result because its execution is not linear and the expected values are not available at the correct time:
1. The client sends the request and moves on to the next statement.
2. The client displays the display container, which is empty because vcount is not (yet) available.
3. The server returns the entity collection and calls the callback function, but without processing anything.

In order for this code to work, you need to place the appropriate processing inside the callback functions, i.e., where the data is available. In this case, the
correct code would be:

// Valid code
var vcount;
var myset = ds.Person.query("ID > 100 and ID < 300", {
 onSuccess: function(event) // we pass a function that receives the server response
 {
 vcount = event.entityCollection.length; // we retrieve the size of the entity collection
 $("#display").html("selection : "+vcount);
 // we display the size of the entity collection in the container whose ID is "display"
 }
});

Executing an Asynchronous Call

To execute a request in asynchronous mode, you just have to pass at least one callback function using either an options object parameter or a direct
function call (the presence of a callback function triggers the asynchronous mode). All the WAF API methods operate on this principle in asynchronous mode.
The asynchronous syntax is in the following forms:

MethodName (mandatory_parameters , options)
or
MethodName (mandatory_parameters , function1 [, function2] [, options])

Here is an example of an asynchronous call:

col.buildFromSelection(sel, { onSuccess: buildsel }); // asynchronous call

For more information about the asynchronous syntax, please refer to the Syntaxes for Callback Functions section.

Error Management

On the client, any errors generated during execution can be retrieved in the callback function(s) specified during asynchronous calls (onError function or
single callback function, see Syntaxes for Callback Functions section). All kinds of errors are returned, whatever their source ‐ datastore validation (user‐
defined errors) or a Wakanda server internal process.

When an error occurs, it is returned by the server as an error property of the parameter (usually named event) of the callback function. The event.error
property is an array that consists of a stack of error objects whose element 0 contains the highest‐level error.

Each element in the error array has the following properties:

Property Type Description
error[n].errCode number error code
error[n].message string message of the error
error[n].componentSignature string signature of the component at the origin of the error

"dbmg" = Wakanda database engine errors
"dbev" = User‐defined validation errors

Component signatures give additional information on the origin of the errors:

dbmg = Wakanda database engine errors signature.
errCode 0 to 1499 = errors related to the database
errCode 1500 to 1799 = errors related to datastore classes
errCode 1800 and 2099 = errors related to REST requests on datastore classes

dbev = User‐defined validation errors signature.

http://livedoc.wakanda.org/Dataprovider/DataClass/query.301-609191.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html
http://livedoc.wakanda.org/Dataprovider/Introduction/Syntaxes-for-Callback-Functions.300-750689.en.html

customized errCode range

Example

Download the example solution

In your model, if you state that the 'salesVolume' attribute cannot be equal to 0, then in the onValidate event for the datastore class, you can write:

Company:
{
 events :
 {
 onValidate:function()
 {
 if(this.salesVolume == 0){
 return {error: 100, errorMessage: 'Sales volume cannot be zero.'}
 }
 }
 }, ...
}

Your Page contains Text Input widgets for attributes. A Display Error widget has been added to the page (selected in the picture below); its ID is used as the
Display Error property of the salesVolume attribute.

You associate the following code with the Save button:

saveButton.click = function saveButton_click (event)
{
 sources.company.save({
 onSuccess: function (event){
 //handle successful save
 sources.company.addEntity(sources.company.getCurrentElement());
 },
 onError: function(event){
 // an error occurred
 // display the top-level error message in the Display Error widget
 $$('salesVolume').setErrorMessage({message: event.error[0].message, tooltip: true});
 }
 });
};

When executing the application, if the user enters '0' for the "Sales Volume" attribute and clicks the Save button, the error is displayed in the area:

The error can also be displayed as a tip (provided that the tooltip option is set to true in the [#cmd id="700200"/] method call):

Behind the scenes, the returned event.error object is an array with two elements:

Elements Contents
event.error[0] {componentSignature: "dbev", errCode: 100, message: "Sales volume cannot be zero."}
event.error[1] {componentSignature: "dbmg", errCode: 1517, message: "The entity #4 of the datastore class "Company" cannot be saved."}

Creating a datasource dynamically

If necessary, you can create a datasource object dynamically (that is, at runtime), and use it in your Pages exactly like a standard datasource created in the
Prototyper (see Prototyper ‐ Datasources).
You can create server datasources bound to datastore classes or local datasources bound to local variables, arrays or objects.

To create a datasource dynamically, you just need to call, on the client side, the WAF.dataSource.create() method that will return a valid datasource. You
have to pass an object as parameter, containing all the necessary information to create the appropriate datasource.

WAF.dataSource.create()

http://download.wakanda.org/Documentation/Samples/ErrorMgr.zip
http://livedoc.wakanda.org/Wakanda-Widgets-Instance-API/Display-Error.201-867919.en.html
http://livedoc.wakanda.org/Prototyper/Prototyper-Datasources.200-987691.en.html

Syntax: Datasource WAF.dataSource.create (Object definition)

In definition, pass an object containing the following properties:

Property Type Description Example
id string ID (name) of the datasource to create 'id': 'myDynSource'
binding string Server or local object name(*) to bind to the datasource 'binding': 'Employee'
data‐source‐type string Type of datasource. Accepted values are: 'data‐source‐type': 'array'

'dataClass': datastore class server datasource (default)
'relatedEntity': relation attribute server datasource
'scalar': local variable datasource
'array': local array datasource
'object': local object datatsource
If this property is missing, WAF will create a datastore class datasource

data‐dataType string Data type of the datasource (used only for local datasources). 'data‐dataType': 'number'
Accepted values are:
'string' (default if omitted)
'number'
'boolean'
'date'

data‐attributes string Description of the attributes (used only for local array datasources). Pass a
comma‐separated list of name:type values.

'data‐attributes':
'company:string,city:string,nbemp:number'

Add ':key' to define the primary key attribute (string or number only) (added in
v6)

'data‐attributes':
'code:string:key,city:string'

data‐
initialQueryString

string Initial query to set the datasource collection 'data‐initialQueryString'='ID > 1000'

Returns Datasource New datasource available through the 'sources' namespace

(*) Regarding local object names, it is a 'best practice' to give the new datasource the same name as the local object, so that the code will be more readable.
In the Prototyper, this is done implicitly (a variable/array/object with the same name as the datasource is automatically bound to the datasource). Note,
however, that this is not mandatory.

WAF.dataSource.create() automatically creates the datasource in the 'sources' namespace and returns a reference that you can put in a local variable for
more convenience.

Datasource Initialization

Keep in mind that:

datasources must be initialized: once created, a dynamic datasource will not be filled automatically with any data until an initial query is executed. It
can be any query, for example allEntities() for a datastore class datasource. You can also use resolveSource() for a related datasource.
datasources are event driven. Any widget that you want to associate with a dynamic datasource must subscribe to this datasource using the
addListener() method to be updated accordingly.

Examples of Server Datasources

Download the example solution

Considering the following simple model:

Creating a Datastore Class Datasource

To create a datastore class datasource named 'employee2' bound to the "Employee" class:

 WAF.dataSource.create({
 'id' : 'employee2', // datasource ID
 'binding': 'Employee' // name of the datastore class
 // if data-source-type is omitted, 'dataclass' type is used by default
 });

Creating a Relation Attribute Datasource

To create a relation attribute datasource named 'employer' bound to the "employer" relation attribute:

 WAF.dataSource.create({
 'id' : 'employer', // datasource ID
 'binding': 'employee.employer' // path of the relation attribute
 // the employee datasource must already exist
 'data-source-type': 'relatedEntity'
 });

Examples of Local Datasources

http://livedoc.wakanda.org/Datasource/Server-Datasources/allEntities.301-607937.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/resolveSource.301-989337.en.html
http://livedoc.wakanda.org/Datasource/Datasources/addListener.301-607904.en.html
http://download.wakanda.org/Documentation/Samples/dynamicSources.zip

Local datasources are bound to local JavaScript variables, arrays or objects. In our examples, these objects are created just before the datasource itself, but
they can already exist in the framework when the dynamic datasource is created.

As described in the Using Local Datasources, you need to synchronize the datasource when the local value changes. This must also be done just after the
datasource has been created, using the sync() method.

Creating a Variable Datasource

To create a variable datasource bound to the vAge JavaScript number variable:

 vAge = 20; //Create and initialize a global variable
 // This could be done in the onLoad event of the document
 WAF.dataSource.create({
 'id' : 'vAge', // datasource name
 'binding' : 'vAge', //target JavaScript variable name
 'data-source-type': 'scalar', //type for variable datasources
 'data-dataType':'number' //create a number variable
 }).sync(); // to synchronize the new datasource

Creating an Array Datasource

To create an array datasource bound to the arPeople JavaScript array, which could be associated with a grid widget for example:

 //Create and initialize a global array
 arPeople = [{"name": "Smith", "age": 45, "job" : "Administrator" }, {"name": "Wesson", "age": 24, "job" : "Accountant" }];
 WAF.dataSource.create({
 'id' : 'arPeople', // datasource name
 'binding' : 'arPeople', //target JavaScript variable name (same name is recommended)
 'data-source-type': 'array', //type for array datasources
 'data-attributes': 'name:string,age:number,job:string' //declare attributes
 }).sync(); // to synchronize the new datasource

Creating an Array Datasource including a Primary Key

To create an array datasource bound to the arPeople JavaScript array and define an ID attribute as a primary key:

 //Create and initialize a global array
 arPeople = [{"name": "Smith", "age": 45, "job" : "Administrator","myid" : "P01" }, {"name": "Wesson", "age": 24, "job" : "Accountant","myid" : "P02"}];
 WAF.dataSource.create({
 'id' : 'arPeople', // datasource name
 'binding' : 'arPeople', //target JavaScript variable name (same name is recommended)
 'data-source-type': 'array', //type for array datasources
 'data-attributes': 'name:string,age:number,job:string,myid:string:key' //declare attributes, myid is the primary key
 }).sync(); // to synchronize the new datasource

Creating an Object Datasource

To create an object datasource bound to the myPerson JavaScript object, which could be associated with a text field for example:

 myPerson = {"name": "Smith", "age": 45, "job" : "Administrator" }; //Create and initialize a global object
 WAF.dataSource.create({
 'id' : 'myPerson', // datasource name
 'binding' : 'myPerson', //target JavaScript object name (same name is recommended)
 'data-source-type': 'object', //type for object datasources
 }).sync(); // to synchronize the new datasource

http://livedoc.wakanda.org/Datasource/Introduction/Using-Local-Datasources.300-618741.en.html
http://livedoc.wakanda.org/Datasource/Local-Datasources/sync.301-624417.en.html

Datasource Attribute Objects

The properties and methods of this theme are provided with datasource attribute objects, which are returned by the getAttribute() datasource method.
They are available for any kind of datasource (storage, related, local), for example:

var simpleAttribute = sources.employee.getAttribute("lastName"); //storage attribute
var relAttribute = sources.company.getAttribute("staff"); //related attribute (collection)

These properties and methods are useful in the context of generic code.

isFirstLevel

Description

The isFirstLevel property returns True or False, indicating whether the attribute is at the first level of the datasource.

Storage and calculated attributes return True. Relation attributes designated by paths are at the second level, so they return False.

Example

sources.employee.getAttribute("worksFor.name").isFirstLevel; // false
sources.employee.getAttribute("lastName").isFirstLevel; // true

isVarAtt

Description

The isVarAtt property returns True if the attribute belongs to a local datasource (array or object datasources only), and False if it belongs to a server
datasource.

Example

sources.arr1.getAttribute("Day").isVarAtt; //true if arr1 is a local datasource
sources.employee.getAttribute("lastName").isVarAtt; //false

kind

Description

The kind property returns the kind of the attribute. The possible values are:

"storage": storage (or scalar) attribute
"calculated": calculated attribute
"relatedEntity": relation attribute (entity)
"relatedEntities": relation attribute (collection)
"alias": alias attribute

Note that the kind property is not determinative client‐side because calling and using these attributes are identical and do not depend on the property.

Example

sources.employee.getAttribute("worksFor.name").kind; //"storage"
sources.employee.getAttribute("worksFor").kind; //"relatedEntity"
sources.company.getAttribute("staff").kind; //"relatedEntities"

dataClassAtt

Description

The dataClassAtt property returns a sub‐object containing the attribute of the datastore class, as returned by the getClassAttributeByName() method, upon
which the datasource attribute is built. The number of properties varies according to the attribute type. These properties, which are described in the
DatastoreClassAttribute section, can be useful for generic programming.

The dataClassAtt property is only available for server datasource attributes.

Example

sources.employee.getAttribute("worksFor.name").dataClassAtt;
// {name: "name", kind: "storage", scope: "public", type: "string", owner: WAF.DataClass…}

simple

Description

The simple property returns true or false depending on the immediate availability of the attribute's value on the client side:

storage attributes, including calculated and related entity server attributes, as well as local datasource attributes, return true
attributes of related entities, which require additional requests to the server, return false

Example

sources.employee.getAttribute("worksFor.name").simple; //true
sources.employee.getAttribute("fullName").simple; //true
sources.company.getAttribute("staff").simple; //false

type

Description

http://livedoc.wakanda.org/Datasource/Datasources/getAttribute.301-607774.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/getClassAttributeByName.301-607882.en.html
http://livedoc.wakanda.org/Dataprovider/DatastoreClassAttribute.201-1046536.en.html

http://livedoc.wakanda.org/Datasource/Datasource-Attribute-Objects/kind.303-1093665.en.html
http://livedoc.wakanda.org/Datasource/Datasources/removeListener.301-722375.en.html
http://livedoc.wakanda.org/Datasource/Datasources/addListener.301-607904.en.html
http://livedoc.wakanda.org/Datasource/Datasources/getAttribute.301-607774.en.html
http://livedoc.wakanda.org/Datasource/Datasources/addListener.301-607904.en.html
http://livedoc.wakanda.org/Datasource/Server-Datasources/query.301-607970.en.html
http://livedoc.wakanda.org/Datasource/Datasources/select.301-608005.en.html
http://livedoc.wakanda.org/Datasource/Events/onAttributeChange.304-997997.en.html
http://livedoc.wakanda.org/Datasource/Datasources/dispatch.301-607926.en.html
http://livedoc.wakanda.org/Datasource/Datasources/dispatch.301-607926.en.html

