
WebSocket Client

Wakanda Server implements the WebSocket client API, allowing you to open a WebSocket connection from the Wakanda SSJS to a
WebSocket server. WebSockets enable applications to use the WebSocket protocol (defined by the IETF) for two‐way
communication with a remote host.
The Wakanda SSJS WebSocket client object implements the WebSocket W3C specification with certain limitations regarding binary
data types (see send()). This specification is based on HTML5 and was originally designed for Web applications.
Please keep in mind that the WebSocket specification is still under discussion and should neither be considered as frozen nor as
finished.

http://www.w3.org/TR/websockets/
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/send.301-1038385.en.html

WebSocket Constructor

WebSocket()

void WebSocket(String url [, String | Array protocols])

Parameter Type Description
url String URL of the Web Socket server to connect to
protocols String, Array Sub‐protocol(s) to use

Description

The WebSocket() method is the constructor of the client WebSocket type class objects. It allows you to create a new Websocket
connection to the Web Socket server whose address you passed in the url parameter.
The protocols parameter can be a string or an array of strings. If present, it specifies one or several subprotocol(s). The server
must support at least one of these subprotocols for the connection to be successful. After the connection is established, the
protocol actually selected by the server is returned in the protocol property.
Implementation Note: In the current Wakanda implementation, the protocol property is not used, thus the protocols parameter
can be left empty or omitted.
Once created, a WebSocket object has properties and methods that you can use to handle the connection and the exchanged
data. These are described in the WebSocket Instances section.

Example

This simple example connects to the "echo" server of www.websocket.org, then sends 10 strings which will be echoed back by the
server.

var ws = new WebSocket("ws://echo.websocket.org");

var i = 0;

function send () {
 var string = "Test message #" + i;
 ws.send(string);
 i++;
 log(string + "\n");
}

ws.onopen= function () {
 log("Connected to \"" + ws.url+ "\".\n");
 send();
}

ws.onmessage = function (message) {
 log("Received \"" + message.data.toString() + "\".\n");
 if (i == 10)
 ws.close();
 else
 send();
}

ws.onerror = function () {
 log("An error happened!\n");
 exitWait();
}

ws.onclose = function (closeEvent) {
 log("Successfully closed.\n");
 exitWait();
}

function log (string) {
 console.log(string);
}
wait();

The following information are written in the solution's log file:

http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/protocol.303-1038598.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/protocol.303-1038598.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances.201-1038311.en.html

WebSocket Instances

WebSocket objects are instantiated by the WebSocket() constructor method.

onopen

Description

The onopen property contains the event handler function to call when an open event is received by the WebSocket object.
An open event is fired by Wakanda Server when the Web Socket connection is established.

onmessage

Description

The onmessage property contains the event handler function to call when a message event is received by the WebSocket object.
A message event is fired by Wakanda Server when a WebSocket message has been received with text data over the WebSocket
connection.
The onmessage function accepts a single parameter, whose data attribute is set to receive data.
By default, data is of the Buffer type. You can set the data type using the binaryType property.

Example

ws.onmessage = function (message) {

 log("Received \"" + message.data.toString() + "\".\n"); //logs received message as text
}

onerror

Description

The onerror property contains the event handler function to call when an error event is received by the WebSocket object.

onclose

Description

The onclose property contains the event handler function to call when a close event is received by the WebSocket object.
A close event is fired by Wakanda Server when the WebSocket connection is closed, regardless of the reason it is closed.
The event handler function receives a single parameter which is a CloseEvent object. This object has the following read‐only
properties:

Property Type Description
wasClean Boolean Represents whether the connection closed cleanly (true) or not (false)
code Number WebSocket connection close code provided by the server
reason String WebSocket connection close reason provided by the server

Example

You want to check whether the close was successful:

ws.onclose = function (closeEvent) {
 if(closeEvent.wasClean = true)
 log("Successfully closed.\n");
 else
 log("Closed with an issue.\n");
 exitWait();

}

url

http://doc.wakanda.org/WebSocket-Client/WebSocket-Constructor/WebSocket.301-1038315.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/binaryType.303-1038844.en.html

Description

The url property returns the result from resolving the URL that was passed to the WebSocket() constructor.

readyState

Description

The readyState property represents the current state of the connection. It can have the following (constant) values:

Constant Numeric
value

State

CONNECTING 0 The connection has not yet been established.
OPEN 1 The WebSocket connection is established and communication is possible.
CLOSING 2 The connection is going through the closing handshake, or the close() method has been

invoked.
CLOSED 3 The connection has been closed or could not be opened.

bufferedAmount

Description

The bufferedAmount property returns the number of bytes that have been queued using send() but not yet sent. If the
connection is closed, this property's value will only increase with each call to the send() method (the number does not reset to
zero once the connection closes).

extensions

Description

The extensions property returns, after the WebSocket connection is established, the extensions selected by the server, if any.
Otherwise, it returns an empty string.

protocol

Description

Implementation Note: This property is not used in the current Wakanda implementation.
The protocol property returns the subprotocol selected by the server, if any. It can be used in conjunction with the array form of
the constructor's second argument to perform subprotocol negotiation.

binaryType

Description

The binaryType read/write property allows you to set the type of data exchanged through the WebSocket, i.e., the message.data
object received in the onmessage event handler function.
The following data types are supported in Wakanda:

"buffer" (default)
"string"

addEventListener()

void addEventListener(String type, Function listener)

Parameter Type Description
type String Event type
listener Function Callback function

Description

Note: This method is inherited from the EventTarget interface (DOM Level 2) that is partially implemented in Wakanda.
The addEventListener() method allows the registration of an event listener in the WebSocket instance.

http://doc.wakanda.org/WebSocket-Client/WebSocket-Constructor/WebSocket.301-1038315.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/close.301-1038391.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/send.301-1038385.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/send.301-1038385.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onmessage.303-1038367.en.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget

In the type parameter, pass the name of the event to register. In the current Wakanda implementation, the following events are
supported:

"open", corresponding to the onopen property,
"message", corresponding to the onmessage property,
"error", corresponding to the onerror property,
"close", corresponding to the onclose property.

In the listener parameter, pass the function to be called when the event occurs.

close()

void close([Number code [, String reason]])

Parameter Type Description
code Number Code for closing
reason String Closing reason

Description

The close() method closes the WebSocket connection or connection attempt, if any.
This method also change the readyState attribute's value to CLOSING (2). If the connection is already closed, the method does
nothing.
Optionally, you can pass a code and a reason parameter to provide information about the closing operation:

code is the status code to use in the WebSocket Close message. It must be a value of 1000 or be in the range from 3000 to
4999;
reason is provided in the WebSocket Close message after the status code.

removeEventListener()

void removeEventListener(String type, Function listener)

Parameter Type Description
type String Event type
listener Function Callback function

Description

Note: This method is inherited from the EventTarget interface (DOM Level 2) that is partially implemented in Wakanda.
The removeEventListener() method allows the removal of event listeners from the WebSocket instance.
In the type parameter, pass the name of the event to be removed. In the current Wakanda implementation, the following events
are supported:

"open", corresponding to the onopen property,
"message", corresponding to the onmessage property,
"error", corresponding to the onerror property,
"close", corresponding to the onclose property.

In the listener parameter, pass the callback function to be removed.
The method does nothing if it is called with arguments which do not identify any currently registered EventListener.

send()

Boolean send(String | Buffer data)

Parameter Type Description
data String, Buffer Data to transmit

Returns Boolean True if data was sent successfully, or false if the connection is closed

Description

The send() method sends text data using the WebSocket connection.
If the readyState attribute is not OPEN, an error is raised. If the data cannot be sent, the WebSocket connection is closed.
The method returns true if the connection is established and the data was sent successfully, or false if the method failed to send
the data and the connection is closed.
Implementation Note: The Wakanda WebSocket Client currenty does not support data of the ArrayBuffer and BLOB types.

http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onopen.303-1038361.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onmessage.303-1038367.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onerror.303-1038373.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onclose.303-1038379.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/readyState.303-1038402.en.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-EventTarget
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onopen.303-1038361.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onmessage.303-1038367.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onerror.303-1038373.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/onclose.303-1038379.en.html
http://doc.wakanda.org/WebSocket-Client/WebSocket-Instances/readyState.303-1038402.en.html

